Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers track down cause of eye mobility disorder

17.04.2014

Normal development stalls in the nerves

Imagine you cannot move your eyes up, and you cannot lift your upper eyelid. You walk through life with your head tilted upward so that your eyes look straight when they are rolled down in the eye socket. Obviously, such a condition should be corrected to allow people a normal position of their head. In order to correct this condition, one would need to understand why this happens.


The image depicts mice having a normal nerve (left) as compared to an incomplete nerve, a condition resulting in permanent downward gaze in both mice and humans. Image courtesy of Jeremy Duncan.

In a paper published in the April 16 print issue of the journal Neuron, University of Iowa researchers Bernd Fritzsch and Jeremy Duncan and their colleagues at Harvard Medical School, along with investigator and corresponding author Elizabeth Engle, describe how their studies on mutated mice mimic human mutations.

It all started when Engle, a researcher at the Howard Hughes Medical Institute (HHMI), and Fritzsch, professor and departmental executive officer in the UI College of Liberal Arts and Sciences Department of Biology, began their interaction on the stimulation of eye muscles by their nerves, or “innervation,” around 20 years ago.

Approximately 10 years ago, Engle had identified the mutated genes in several patients with the eye movement disorder and subsequently developed a mouse with the same mutation she had identified in humans. However, while the effect on eye muscle innervation was comparable, there still was no clue as to why this should happen.

Fritzsch and his former biology doctoral student, Jeremy Duncan, worked with the Harvard researchers on a developmental study to find the point at which normal development of eye muscle innervations departs from the mutants. To their surprise, it happened very early in development. In fact, they found—only in mutant mice—a unique swelling in one of the nerves to the eye muscle.

More detailed analysis showed that these swellings came about because fibers extending to the eyes from the brain tried to leave the nerve as if they were already in the orbit, or eye socket. Since it happened so early, the researchers reasoned that something must be transported more effectively by this mutation to the motor neurons trying to reach the orbit and the eye muscles; something must be causing these motor neurons to assume they have already reached their target, the orbit of the eye.

To verify this enhanced function, the researchers developed another mouse that lacked the specific protein and found no defects in muscle innervation. Moreover, when they bred mice that carried malformed proteins with those that had none of these proteins, the mice developed a normal innervation.

This data provided clear evidence of what was going wrong and why, but it did not provide a clue as to the possible product that was more effectively transported in the mutant mice and, by logical extension, in humans. Further analysis revealed that breeding their mutant mice with another mutant having eye muscle innervation defects could enhance the effect of either mutation.

With this finding, they had identified the mutated protein, its enhanced function, and at least some of the likely cargo transported by this protein to allow normal innervation of eye muscles. This data provides the necessary level of understanding to design rational approaches to block the defect from developing.

Knowing what goes wrong and at what time during development can allow the problem to be corrected before it develops through proper manipulations. Engle, Fritzsch, and their collaborators currently are designing new approaches to rescue normal innervation in mice. In the future, their work may help families carrying such genetic mutations to have children with normal eye movement.

The title of the Neuron paper is “Human CFEOM1 Mutations Attenuate KIF21A Autoinhibition and Cause Oculomotor Axon Stalling.”

The research was supported by a National Institutes of Health (NIH) grant to Engle and colleague Fritzsch and HHMI funding to Engle.

Contacts

Steve Kehoe, Department of Biology, 319-335-1050

Steve Kehoe | Eurek Alert!
Further information:
http://www.uowa.edu

Further reports about: Biology Department HHMI NIH Neuron disorder eye movement eye movement disorders eyes genes movement protein proteins

More articles from Health and Medicine:

nachricht GLUT5 fluorescent probe fingerprints cancer cells
20.04.2018 | Michigan Technological University

nachricht Scientists re-create brain neurons to study obesity and personalize treatment
20.04.2018 | Cedars-Sinai Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>