Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers study joints at tissue, cellular levels

25.07.2012
Cleveland Clinic team simulates cartilage response to loading

A Cleveland Clinic research team is developing virtual models of human knee joints to better understand how tissues and their individual cells react to heavy loads – virtual models that someday can be used to understand damage mechanisms caused by the aging process or debilitating diseases, such as osteoarthritis.


A macro-scale model of the knee (left) was created to study compressive loading of the joint. At the micro scale, the single-cell model (top, right) has been used in previous studies, while Erdemir’s 11-cell model better represents the effects of loading on the individual cells. (Erdemir/Cleveland Clinic)


Erdemir’s finite element model of the knee joint with representation of the cartilage, menisci and the associated bone structures. An enlarged model region (right) illustrates the mesh resolution of the simulation. (Erdemir/Cleveland Clinic)

Led by Ahmet Erdemir, Ph.D., the team is leveraging the powerful computing systems of the Ohio Supercomputer Center to develop state-of-the-art computational representations of the human body to understand how movement patterns and loads on the joints deform the surrounding tissues and cells. Erdemir is the director of the Computational Biomodeling Core (CoBi) and a faculty member in the Department of Biomedical Engineering at the Lerner Research Institute (LRI) in Cleveland, Ohio.

“The aging process and debilitating diseases affect many aspects of the mechanical function of the human body: from the way we move to how our muscles, joints, tissues, and cells accommodate the loading exerted on the body during daily activities,” Erdemir explained. “Computational modeling techniques provide an avenue to obtain additional insights about mechanics at various spatial scales.”
Many macro-scale studies have looked at how the various components of a knee joint – cartilage, menisci, ligaments and bone – respond to weight and other external loads. However, Erdemir and colleague Scott C. Sibole wanted to better understand how those large mechanical forces correspond to the related deformation of individual cartilage cells – or chondrocytes – within the knee. Previous micro-scale studies of cartilage have not commonly been based on data from body-level scales, in particular, by the musculoskeletal mechanics of the knee joint.

In addition, calculated deformations typically have been for a single cell at the center of a 100-cubic-micrometer block of simulated tissue; Erdemir used an anatomically based representation that calculated deformations for 11 cells distributed within the same volume.

“In both micro-scale approaches, the cartilage cells experienced amplified deformations compared to those at the macro-scale, predicted by simulating the compression of tissues in the knee joint under the weight of the body,” Erdemir found. “In the 11-cell case, all cells experienced less deformation than the single cell case, and also exhibited a larger variance in deformation compared to other cells residing in the same block.”

Erdemir’s method proved to be highly scalable because of micro-scale model independence that allowed exploitation of distributed memory computing architecture. As a result, Sibole, a research engineer at LRI, was able to leverage the computational muscle of OSC’s IBM 1350 Glenn Cluster. At the time, the 9,500 nodes of the Glenn Cluster provided 75 teraflops of computing power, tech-speak for 75 trillion calculations per second. Recently, the Glenn Cluster was partially decommissioned when engineers deployed the center’s more powerful HP-Intel Xeon Oakley Cluster.

“Both of OSC’s two most recent flagship computing systems were specifically designed to support biomedical applications, such as those employed by Dr. Erdemir and Mr. Sibole,” said Ashok Krishnamurthy, OSC interim co-executive director. “Researchers working at Ohio’s various respected medical centers are conducting an ever-increasing load of computational studies and analyses, and they now represent a significant share of our user community.”

An article authored by Erdemir and Sibole, “Chondrocyte Deformations as a Function of Tibiofemoral Joint Loading Predicted by a Generalized High-Throughput Pipeline of Multi-Scale Simulations,” was recently published in PLoS ONE, an international, peer-reviewed, open-access, online journal. Grant funding from the National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health supported the study.

The Ohio Supercomputer Center (OSC), a member of the Ohio Technology Consortium of the Ohio Board of Regents, addresses the rising computational demands of academic and industrial research communities by providing a robust shared infrastructure and proven expertise in advanced modeling, simulation and analysis. OSC empowers scientists with the vital resources essential to make extraordinary discoveries and innovations, partners with businesses and industry to leverage computational science as a competitive force in the global knowledge economy, and leads efforts to equip the workforce with the key technology skills required to secure 21st century jobs. For more, visit www.osc.edu.

The Department of Biomedical Engineering (BME) at the Lerner Research Institute is committed to investigation, innovation, and translation of scientific discoveries to enhance patient care. The Lerner Research Institute is home to Cleveland Clinic's laboratory-based, translational and clinical research. For more, visit www.lerner.ccf.org/bme.

Jamie Abel | EurekAlert!
Further information:
http://www.oh-tech.org

More articles from Health and Medicine:

nachricht A promising target for kidney fibrosis
21.04.2017 | Brigham and Women's Hospital

nachricht Stem cell transplants: activating signal paths may protect from graft-versus-host disease
20.04.2017 | Technische Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>