Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers step closer to custom-building new blood vessels

17.07.2013
Vessels grown from pluripotent stem cells able to function inside mice

Researchers at Johns Hopkins have coaxed stem cells into forming networks of new blood vessels in the laboratory, then successfully transplanted them into mice.


Shown are lab-grown human blood vessel networks (red) incorporating into and around mouse networks (green). Credit: PNAS

The stem cells are made by reprogramming ordinary cells, so the new technique could potentially be used to make blood vessels genetically matched to individual patients and unlikely to be rejected by their immune systems, the investigators say. The results appear online this week in the Proceedings of the National Academy of Sciences.

"In demonstrating the ability to rebuild a microvascular bed in a clinically relevant manner, we have made an important step toward the construction of blood vessels for therapeutic use," says Sharon Gerecht, Ph.D., an associate professor in the Johns Hopkins University Department of Chemical and Biomolecular Engineering, Physical Sciences–Oncology Center and Institute for NanoBioTechnology. "Our findings could yield more effective treatments for patients afflicted with burns, diabetic complications and other conditions in which vasculature function is compromised."

Gerecht's research group and others had previously grown blood vessels in the laboratory using stem cells, but barriers remain to efficiently producing the vessels and using them to treat patients.

For the current study, the group focused on streamlining the new growth process. Where other experiments used chemical cues to get stem cells to form cells of a single type, or to mature into a smorgasbord of cell types that the researchers would then sort through, graduate student Sravanti Kusuma devised a way to get the stem cells to form the two cell types needed to build new blood vessels — and only those types. "It makes the process quicker and more robust if you don't have to sort through a lot of cells you don't need to find the ones you do, or grow two batches of cells," she says.

A second difference from previous experiments was that instead of using adult stem cells derived from cord blood or bone marrow to construct the network of vessels, Gerecht's group teamed with Linzhao Cheng, Ph.D., a professor in the Institute for Cell Engineering, to use induced pluripotent stem cells as their starting point. Since this type of cell is made by reverse-engineering mature cells — from the skin or blood, for example — using it means that the resulting blood vessels could be tailor-made for specific patients, Kusuma says. "This is an elegant use of human induced pluripotent stem cells that can form multiple cell types within one kind of tissue or organ and have the same genetic background," Cheng says. "This study showed that in addition to being able to form blood cells and neural cells as previously shown, blood-derived human induced pluripotent stem cells can also form multiple types of vascular network cells."

To grow the vessels, the research team put the stem cells into a scaffolding made of a squishy material called hydrogel. The hydrogel was loaded with chemical cues that nudged the cells to organize into a network of recognizable blood vessels made up of cells that create the network and the type that support and give vessels their structure. This was the first time that blood vessels had been constructed from human pluripotent stem cells in synthetic material.

To learn whether the vessel-infused hydrogel would work inside a living animal, the group implanted it into mice. After two weeks, the lab-grown vessels had integrated with the mice's own vessels, and the hydrogel had begun to biodegrade and disappear as it had been designed to do. "That these vessels survive and function inside a living animal is a crucial step in getting them to medical application," Kusuma says.

One of the next steps, she says, will be to look more closely at the 3-D structures the lab-grown vessels form. Another will be to see whether the vessels can deliver blood to damaged tissues and help them recover.

The study was funded by the American Heart Association, the National Heart, Lung, and Blood Institute (grant numbers F31HL112644, 2R01 HL073781 and R01 HL107938), the National Cancer Institute (grant number U54CA143868) and the National Science Foundation (grant number 1054415).

Other authors on the report were Yu-I Shen, Donny Hanjaya-Putra and Prashant Mali, all of The Johns Hopkins University.

Link to the PNAS article: http://www.pnas.org/content/early/2013/07/10/1306562110.abstract?sid=90ae5bc4-5a8e-41ec-be25-ec2c25923f9a

Related articles:

Steering Stem Cells to Become Two Different Building Blocks for New Blood Vessels: http://releases.jhu.edu/2012/12/20/steering-stem-cells-to-become-building-blocks-for-blood-vessels/

Researcher Seeks to Turn Stem Cells into Blood Vessels: http://www.jhu.edu/news/home09/feb09/gerecht.html

Linzhao Cheng on Making Stem Cells from a Patient's Blood Sample: http://www.hopkinsmedicine.org/institute_cell_engineering/_includes/videos/

Transcriptions/Cheng_txn.html

Shawna Williams | EurekAlert!
Further information:
http://www.jhmi.edu

More articles from Health and Medicine:

nachricht The end of pneumonia? New vaccine offers hope
23.10.2017 | University at Buffalo

nachricht Scientists track ovarian cancers to site of origin: Fallopian tubes
23.10.2017 | Johns Hopkins Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Microfluidics probe 'cholesterol' of the oil industry

23.10.2017 | Life Sciences

Gamma rays will reach beyond the limits of light

23.10.2017 | Physics and Astronomy

The end of pneumonia? New vaccine offers hope

23.10.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>