Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers show a genetic overlap in schizophrenia and cognitive ability

17.12.2013
Investigators at The Feinstein Institute for Medical Research have discovered for the first time, direct evidence of a genetic overlap between schizophrenia and general cognitive ability. The findings are published online in Molecular Psychiatry.

Schizophrenia is a chronic, severe and disabling brain disorder that affects approximately 2.2 million Americans each year. It is characterized by a significant reduction in general cognitive abilities, so that many patients struggle with completing school, holding jobs and achieving their full potential.

Previous studies have indicated subtle cognitive abnormalities in undiagnosed and unmedicated relatives of patients who live with schizophrenia, which suggests the possibility of genetic overlap between risk for schizophrenia and cognitive traits. These previous studies, however, did not test this overlap on the molecular level.

Anil Malhotra, MD, director of psychiatry research at Zucker Hillside Hospital and an investigator at the Feinstein Institute, and his colleague Todd Lencz, PhD, associate investigator at the Zucker Hillside Hospital and the Feinstein Institute, conducted the first molecular genetic test to determine if genetic markers of reduced cognitive ability were also genetic markers of increased schizophrenia risk. Specifically, they conducted a large-scale, meta-analysis, genome-wide association study (GWAS) of samples from 5,000 subjects provided by the Cognitive Genomics consorTium (COGENT). COGENT, which was founded and is led by Dr. Malhotra, is an international consortium of nine teams of researchers across seven countries.

Through their analysis, they confirmed that patients who suffered from schizophrenia also had lessened cognitive ability. This is the first direct evidence for genetic overlap between schizophrenia risk genes and genes that regulate general cognitive ability, such as memory, attention, and language abilities. The results provide molecular confirmation of this genetic overlap and additional insight into how schizophrenia develops and progresses.

"This research leads us to a deeper understanding of how schizophrenia affects the brain at the molecular level," said Dr. Lencz. "Our studies are designed to provide clues to the development of new treatments to improve the lives of our patients."

About The Feinstein Institute for Medical Research

Headquartered in Manhasset, NY, The Feinstein Institute for Medical Research is home to international scientific leaders in many areas including Parkinson's disease, Alzheimer's disease, psychiatric disorders, rheumatoid arthritis, lupus, sepsis, human genetics, pulmonary hypertension, leukemia, neuroimmunology, and medicinal chemistry. The Feinstein Institute, part of the North Shore-LIJ Health System, ranks in the top 6th percentile of all National Institutes of Health grants awarded to research centers.

Emily Ng | EurekAlert!
Further information:
http://www.FeinsteinInstitute.org
http://www.nshs.edu

More articles from Health and Medicine:

nachricht Chronic stress induces fatal organ dysfunctions via a new neural circuit
21.08.2017 | Hokkaido University

nachricht New malaria analysis method reveals disease severity in minutes
14.08.2017 | University of British Columbia

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Nagoya physicists resolve long-standing mystery of structure-less transition

21.08.2017 | Materials Sciences

Chronic stress induces fatal organ dysfunctions via a new neural circuit

21.08.2017 | Health and Medicine

Scientists from the MSU studied new liquid-crystalline photochrom

21.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>