Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers regenerate axons necessary for voluntary movement

08.04.2009
For the first time, researchers have clearly shown regeneration of a critical type of nerve fiber that travels between the brain and the spinal cord and which is required for voluntary movement.

The regeneration was accomplished in a brain injury site in rats by scientists at the University of California, San Diego School of Medicine and is described in a study to be published in the April 6th early on-line edition of the Proceedings of the National Academy of Sciences (PNAS).

"This finding establishes a method for regenerating a system of nerve fibers called corticospinal motor axons. Restoring these axons is an essential step in one day enabling patients to regain voluntary movement after spinal cord injury," said Mark Tuszynski, MD, PhD, professor of neurosciences, director of the Center for Neural Repair at UC San Diego and neurologist at the Veterans Affairs San Diego Health System.

The corticospinal tract is a massive collection of nerve fibers called axons – long, slender projections of neurons that travel between the cerebral cortex of the brain and the spinal cord, carrying signals for movement from the brain to the body. Voluntary movement occurs through the activation of the upper motor neuron that resides in the frontal lobe of the brain and extends its axon down the spinal cord to the lower motor neuron. The lower motor neuron, in turn, sends its axon out to the muscle cells. In spinal cord injuries, the axons that run along the corticospinal tract are severed so that the lower motor neurons, below the site of injury, are disconnected from the brain.

"Previous spinal cord injury studies have shown regeneration of other nerve fiber systems that contribute to movement, but have not convincingly shown regeneration of the corticospinal system," said Tuszynski, theorizing this was due to a limited intrinsic ability of corticospinal neurons to turn on genes that allow regeneration after injury. He added that, without regeneration of corticospinal axons, it is questionable whether functional recovery would be attainable in humans.

The UC San Diego team achieved corticospinal regeneration by genetically engineering the injured neurons to over-express receptors for a type of nervous system growth factor called brain-derived neurotrophic factor (BDNF). The growth factor was delivered to a brain lesion site in injured rats. There, the axons – because they now expressed trkB, the receptor for BDNF– were able to respond to the growth factor and regenerate into the injury site. In the absence of overexpression of trkB, no regeneration occurred.

Although functional recovery in the animals was not assessed, the new study shows for the first time that regeneration of the corticospinal system – which normally does not respond to treatment – can be achieved in a brain lesion site.

"The next step will be to try this in a spinal cord injury site, once we get the injured neurons to send the growth factor receptor all the way down the axon and into the spinal cord," said Tuszynski, adding that the UC San Diego research team is now working on this. "We will then assess whether regeneration of corticospinal nerve fibers will lead to functional recovery and restored movement in animal models."

This work builds on another study from Tuszynski's laboratory, published in the February 8, 2009 issue of Nature Medicine, which reported that BDNF also exhibits potential as a therapy for reducing brain cell loss in Alzheimer's disease.

The lead author of the study was Edmund R. Hollis II, PhD. Additional contributors to the article included Pouya Jamshidi, Karin Low and Armin Blesch of the UC San Diego Department of Neurosciences. Their work was supported by grants from the National Institutes of Health, the Veterans Administration, the Dr. Miriam and Sheldon G. Adelson Medical Research Foundation and the Bernard and Anne Spitzer Charitable Trust.

Debra Kain | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Health and Medicine:

nachricht GLUT5 fluorescent probe fingerprints cancer cells
20.04.2018 | Michigan Technological University

nachricht Scientists re-create brain neurons to study obesity and personalize treatment
20.04.2018 | Cedars-Sinai Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>