Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers regenerate axons necessary for voluntary movement

08.04.2009
For the first time, researchers have clearly shown regeneration of a critical type of nerve fiber that travels between the brain and the spinal cord and which is required for voluntary movement.

The regeneration was accomplished in a brain injury site in rats by scientists at the University of California, San Diego School of Medicine and is described in a study to be published in the April 6th early on-line edition of the Proceedings of the National Academy of Sciences (PNAS).

"This finding establishes a method for regenerating a system of nerve fibers called corticospinal motor axons. Restoring these axons is an essential step in one day enabling patients to regain voluntary movement after spinal cord injury," said Mark Tuszynski, MD, PhD, professor of neurosciences, director of the Center for Neural Repair at UC San Diego and neurologist at the Veterans Affairs San Diego Health System.

The corticospinal tract is a massive collection of nerve fibers called axons – long, slender projections of neurons that travel between the cerebral cortex of the brain and the spinal cord, carrying signals for movement from the brain to the body. Voluntary movement occurs through the activation of the upper motor neuron that resides in the frontal lobe of the brain and extends its axon down the spinal cord to the lower motor neuron. The lower motor neuron, in turn, sends its axon out to the muscle cells. In spinal cord injuries, the axons that run along the corticospinal tract are severed so that the lower motor neurons, below the site of injury, are disconnected from the brain.

"Previous spinal cord injury studies have shown regeneration of other nerve fiber systems that contribute to movement, but have not convincingly shown regeneration of the corticospinal system," said Tuszynski, theorizing this was due to a limited intrinsic ability of corticospinal neurons to turn on genes that allow regeneration after injury. He added that, without regeneration of corticospinal axons, it is questionable whether functional recovery would be attainable in humans.

The UC San Diego team achieved corticospinal regeneration by genetically engineering the injured neurons to over-express receptors for a type of nervous system growth factor called brain-derived neurotrophic factor (BDNF). The growth factor was delivered to a brain lesion site in injured rats. There, the axons – because they now expressed trkB, the receptor for BDNF– were able to respond to the growth factor and regenerate into the injury site. In the absence of overexpression of trkB, no regeneration occurred.

Although functional recovery in the animals was not assessed, the new study shows for the first time that regeneration of the corticospinal system – which normally does not respond to treatment – can be achieved in a brain lesion site.

"The next step will be to try this in a spinal cord injury site, once we get the injured neurons to send the growth factor receptor all the way down the axon and into the spinal cord," said Tuszynski, adding that the UC San Diego research team is now working on this. "We will then assess whether regeneration of corticospinal nerve fibers will lead to functional recovery and restored movement in animal models."

This work builds on another study from Tuszynski's laboratory, published in the February 8, 2009 issue of Nature Medicine, which reported that BDNF also exhibits potential as a therapy for reducing brain cell loss in Alzheimer's disease.

The lead author of the study was Edmund R. Hollis II, PhD. Additional contributors to the article included Pouya Jamshidi, Karin Low and Armin Blesch of the UC San Diego Department of Neurosciences. Their work was supported by grants from the National Institutes of Health, the Veterans Administration, the Dr. Miriam and Sheldon G. Adelson Medical Research Foundation and the Bernard and Anne Spitzer Charitable Trust.

Debra Kain | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Health and Medicine:

nachricht Biofilm discovery suggests new way to prevent dangerous infections
23.05.2017 | University of Texas at Austin

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

A CLOUD of possibilities: Finding new therapies by combining drugs

24.05.2017 | Life Sciences

Carcinogenic soot particles from GDI engines

24.05.2017 | Life Sciences

A quantum walk of photons

24.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>