Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Pursue Promising New Approach in the Treatment of Liver Cancer

07.03.2012
Hepatocellular carcinoma (HCC), or primary cancer of the liver, is the fifth most common cancer worldwide.

Despite the prevalence of this disease, until now there has been no effective, systemic treatment. Thanks to a team of researchers in Boston University’s Departments of Biology and Chemistry, and the Program in Molecular Biology, Cell Biology, and Biochemistry, that may be about to change.

The BU research team and collaborators recently discovered a promising new protein target for chemotherapy in the treatment of liver cancer—the transcription factor LSF. (Transcription factors are regulatory proteins that bind genomic DNA near the start of genes, either promoting or inhibiting the transcription or copying of the gene.) LSF is found in high levels in the tumor tissue of patients with liver cancer and has been demonstrated to promote the development of cancer (oncogenesis) in studies using laboratory rodents.

Central to their findings, the BU scientists identified small molecules that effectively inhibit LSF cellular activity, which in turn slows the growth of the cancer. In particular, one such molecule, called Factor Quinolinone Inhibitor 1 (FQI1), derived from a lead compound, was found to inhibit the ability of LSF to bind DNA both in extracts (in vitro, as determined by electrophoretic mobility shift assays), and in cells. Consistent with inhibiting LSF activity, FQI1 also eliminates the ability of LSF to turn up transcription. FQI1 also demonstrates antiproliferative activity, or the ability to prevent or retard the growth of cells. While FQI1 quickly causes cell death in LSF-overexpressing cells, including liver cancer cells, healthy cells are unaffected by the treatment. This phenomenon has been called oncogene addiction, where tumor cells are “addicted” to the activity of an oncogenic factor for their survival, but normal cells can do without it. This is very encouraging for use of such compounds clinically.

Quantitative analysis of FQI1 (based on a concordant structure-activity relationship of a panel of 23 quinolinones) strongly suggests that its growth inhibitory activity focuses on a single biological target or family. This focus, coupled with the striking correlation between the concentrations required for antiproliferative activity and for inhibition of LSF transactivation indicates that LSF is that specific biological target of FQI1.

Building on the in vitro trials, the researchers tested the efficacy of FQI1 in inhibiting liver cancer tumor growth by injecting HCC cell lines into rodent models. FQI1 was observed to significantly inhibit tumor growth with no observable side effects (general tissue cytotoxicity). These dramatic findings support the further development of LSF inhibitors as a promising new chemotherapy treatment for liver cancer.

The team’s findings have been published in the article (Antiproliferative small molecule inhibitors of transcription factor LSF reveal oncogene addiction to LSF in hepatocellular carcinoma) in the Proceedings of the National Academy of Science (PNAS) (www.pnas.org/lookup/suppl/doi:10.1073/pnas.1121601109). The co-principal investigators are Ulla Hansen, Professor of Biology, and Scott Schaus, Associate Professor of Chemistry, Boston University.

Contributing authors are Trevor J. Grant, Girish Barot, Hang Gyeong Chin, Sarah Woodson, Jennifer Sherman, and Tracy Meehan, Department of Biology, Boston University; Joshua A. Bishop, Lisa M. Christadore, and John Kavouris, Department of Chemistry, Center for Chemical Methodology and Library Development at Boston University; Sriharsa Pradhan, New England BioLabs, Inc., Ipswich, MA; Ayesha Siddiq, Rachel Gredler, Xue-Ning Shen, and Devanand Sarkar, Department of Human and Molecular Genetics, Virginia Commonwealth University School of Medicine, Richmond, VA; Laura A. Briggs and William H. Andrews, Sierra Sciences, LLC, Reno, NV; and Kevin Fitzgerald, Alnylam Pharmaceuticals, Inc., Cambridge, MA.

About Boston University—Founded in 1839, Boston University is an internationally recognized private research university with more than 30,000 students participating in undergraduate, graduate, and professional programs. As Boston University’s largest academic division, the College and Graduate School of Arts & Sciences is the heart of the BU experience with a global reach that enhances the University’s reputation for teaching and research.

Contact information for the authors:

Ulla M. Hansen, Professor
Department of Biology
Boston University
5 Cummington St.
Boston, MA 02215
Office Phone (617) 353-8730
Email uhansen@bu.edu
Website www.bu.edu/biology/people/faculty/hansen/
Scott E. Schaus, Associate Professor
Department of Chemistry
Boston University
590 Commonwealth Ave.
Boston, MA 02215
Office
Phone (617) 353-2489
Email seschaus@bu.edu

Scott E. Schaus | Newswise Science News
Further information:
http://www.bu.edu

More articles from Health and Medicine:

nachricht A promising target for kidney fibrosis
21.04.2017 | Brigham and Women's Hospital

nachricht Stem cell transplants: activating signal paths may protect from graft-versus-host disease
20.04.2017 | Technische Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>