Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Pursue Promising New Approach in the Treatment of Liver Cancer

07.03.2012
Hepatocellular carcinoma (HCC), or primary cancer of the liver, is the fifth most common cancer worldwide.

Despite the prevalence of this disease, until now there has been no effective, systemic treatment. Thanks to a team of researchers in Boston University’s Departments of Biology and Chemistry, and the Program in Molecular Biology, Cell Biology, and Biochemistry, that may be about to change.

The BU research team and collaborators recently discovered a promising new protein target for chemotherapy in the treatment of liver cancer—the transcription factor LSF. (Transcription factors are regulatory proteins that bind genomic DNA near the start of genes, either promoting or inhibiting the transcription or copying of the gene.) LSF is found in high levels in the tumor tissue of patients with liver cancer and has been demonstrated to promote the development of cancer (oncogenesis) in studies using laboratory rodents.

Central to their findings, the BU scientists identified small molecules that effectively inhibit LSF cellular activity, which in turn slows the growth of the cancer. In particular, one such molecule, called Factor Quinolinone Inhibitor 1 (FQI1), derived from a lead compound, was found to inhibit the ability of LSF to bind DNA both in extracts (in vitro, as determined by electrophoretic mobility shift assays), and in cells. Consistent with inhibiting LSF activity, FQI1 also eliminates the ability of LSF to turn up transcription. FQI1 also demonstrates antiproliferative activity, or the ability to prevent or retard the growth of cells. While FQI1 quickly causes cell death in LSF-overexpressing cells, including liver cancer cells, healthy cells are unaffected by the treatment. This phenomenon has been called oncogene addiction, where tumor cells are “addicted” to the activity of an oncogenic factor for their survival, but normal cells can do without it. This is very encouraging for use of such compounds clinically.

Quantitative analysis of FQI1 (based on a concordant structure-activity relationship of a panel of 23 quinolinones) strongly suggests that its growth inhibitory activity focuses on a single biological target or family. This focus, coupled with the striking correlation between the concentrations required for antiproliferative activity and for inhibition of LSF transactivation indicates that LSF is that specific biological target of FQI1.

Building on the in vitro trials, the researchers tested the efficacy of FQI1 in inhibiting liver cancer tumor growth by injecting HCC cell lines into rodent models. FQI1 was observed to significantly inhibit tumor growth with no observable side effects (general tissue cytotoxicity). These dramatic findings support the further development of LSF inhibitors as a promising new chemotherapy treatment for liver cancer.

The team’s findings have been published in the article (Antiproliferative small molecule inhibitors of transcription factor LSF reveal oncogene addiction to LSF in hepatocellular carcinoma) in the Proceedings of the National Academy of Science (PNAS) (www.pnas.org/lookup/suppl/doi:10.1073/pnas.1121601109). The co-principal investigators are Ulla Hansen, Professor of Biology, and Scott Schaus, Associate Professor of Chemistry, Boston University.

Contributing authors are Trevor J. Grant, Girish Barot, Hang Gyeong Chin, Sarah Woodson, Jennifer Sherman, and Tracy Meehan, Department of Biology, Boston University; Joshua A. Bishop, Lisa M. Christadore, and John Kavouris, Department of Chemistry, Center for Chemical Methodology and Library Development at Boston University; Sriharsa Pradhan, New England BioLabs, Inc., Ipswich, MA; Ayesha Siddiq, Rachel Gredler, Xue-Ning Shen, and Devanand Sarkar, Department of Human and Molecular Genetics, Virginia Commonwealth University School of Medicine, Richmond, VA; Laura A. Briggs and William H. Andrews, Sierra Sciences, LLC, Reno, NV; and Kevin Fitzgerald, Alnylam Pharmaceuticals, Inc., Cambridge, MA.

About Boston University—Founded in 1839, Boston University is an internationally recognized private research university with more than 30,000 students participating in undergraduate, graduate, and professional programs. As Boston University’s largest academic division, the College and Graduate School of Arts & Sciences is the heart of the BU experience with a global reach that enhances the University’s reputation for teaching and research.

Contact information for the authors:

Ulla M. Hansen, Professor
Department of Biology
Boston University
5 Cummington St.
Boston, MA 02215
Office Phone (617) 353-8730
Email uhansen@bu.edu
Website www.bu.edu/biology/people/faculty/hansen/
Scott E. Schaus, Associate Professor
Department of Chemistry
Boston University
590 Commonwealth Ave.
Boston, MA 02215
Office
Phone (617) 353-2489
Email seschaus@bu.edu

Scott E. Schaus | Newswise Science News
Further information:
http://www.bu.edu

More articles from Health and Medicine:

nachricht Biofilm discovery suggests new way to prevent dangerous infections
23.05.2017 | University of Texas at Austin

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>