Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers do precise gene therapy without a needle

17.10.2011
For the first time, researchers have found a way to inject a precise dose of a gene therapy agent directly into a single living cell without a needle.

The technique uses electricity to “shoot” bits of therapeutic biomolecules through a tiny channel and into a cell in a fraction of a second.

L. James Lee and his colleagues at Ohio State University describe the technique in the online edition of the journal Nature Nanotechnology, where they report successfully inserting specific doses of an anti-cancer gene into individual leukemia cells to kill them.

They have dubbed the method “nanochannel electroporation,” or NEP.

“NEP allows us to investigate how drugs and other biomolecules affect cell biology and genetic pathways at a level not achievable by any existing techniques,” said Lee, who is the Helen C. Kurtz Professor of Chemical and Biomolecular Engineering and director of the NSF Nanoscale Science and Engineering Center for Affordable Nanoengineering of Polymeric Biomedical Devices at Ohio State.

There have long been ways to insert random amounts of biomaterial into bulk quantities of cells for gene therapy. And fine needles can inject specific amounts of material into large cells. But most human cells are too small for even the smallest needles to be of any use.

NEP gets around the problem by suspending a cell inside an electronic device with a reservoir of therapeutic agent nearby. Electrical pulses push the agent out of the reservoir and through a nanometer- (billionth of a meter) scale channel in the device, through the cell wall, and into the cell. Researchers control the dose by adjusting the number of pulses and the width of the channel.

In Nature Nanotechnology, they explain how they constructed prototype devices using polymer stamps. They used individual strands of DNA as templates for the nanometer-sized channels.

Lee invented the technique for uncoiling strands of DNA and forming them into precise patterns so that they could work as wires in biologically based electronics and medical devices. But for this study, gold-coated DNA strands were stretched between two reservoirs and then etched away, in order to leave behind a nano-channel of precise dimensions connecting the reservoirs within the polymeric device.

Electrodes in the channels turn the device into a tiny circuit, and electrical pulses of a few hundred volts travel from the reservoir with the therapeutic agent through the nano-channel and into a second reservoir with the cell. This creates a strong electric field at the outlet of the nano-channel, which interacts with the cell’s natural electric charge to force open a hole in the cell membrane – one large enough to deliver the agent, but small enough not to kill the cell.

In tests, they were able to insert agents into cells in as little as a few milliseconds, or thousandths of a second.

First, they tagged bits of synthetic DNA with fluorescent molecules, and used NEP to insert them into human immune cells. After a single 5-millisecond pulse, they began see spots of fluorescence scattered within the cells. They tested different pulse lengths up to 60 milliseconds – which filled the cells with fluorescence.

To test whether NEP could deliver active therapeutic agents, they inserted bits of therapeutic RNA into leukemia cells. Pulses as short as 5 milliseconds delivered enough RNA to kill some of the cells. Longer pulses – approaching 10 milliseconds – killed almost all of them. They also inserted some harmless RNA into other leukemia cells for comparison, and those cells lived.

At the moment, the process is best suited for laboratory research, Lee said, because it only works on one cell or several cells at a time. But he and his team are working on ways to inject many cells simultaneously. They are currently developing a mechanical cell-loading system that would inject up to 100,000 cells at once, which would potentially make clinical diagnostics and treatments possible.

“We hope that NEP could eventually become a tool for early cancer detection and treatment – for instance, inserting precise amounts of genes or proteins into stem cells or immune cells to guide their differentiation and changes – without the safety concerns caused by overdosing, and then placing the cells back in the body for cell-based therapy,” Lee added.

He sees potential applications for diagnosing and treating leukemia, lung cancer, and other tumors. He’s working with researchers at Ohio State’s Comprehensive Cancer Center to explore those possibilities.

Coathors on the paper include Pouyan Boukany, Andrew Morss, Wei-ching Liao, Brian Henslee, Xulang Zhang, Bo Yu, Xinmei Wang, Yun Wu, HyunChul Jung, Lei Li, Keliang Gao, Xin Hu, Xi Zhao, O. Hemminger, Wu Lu, and Gregory P. Lafyatis, all of Ohio State.

This work was funded by the National Science Foundation.

Contact: L. James Lee, (614) 292-2408; Lee.31@osu.edu
Written by Pam Frost Gorder, (614) 292-9475; Gorder.1@osu.edu

L. James Lee | EurekAlert!
Further information:
http://www.osu.edu

More articles from Health and Medicine:

nachricht One gene closer to regenerative therapy for muscular disorders
01.06.2017 | Cincinnati Children's Hospital Medical Center

nachricht The gut microbiota plays a key role in treatment with classic diabetes medication
01.06.2017 | University of Gothenburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>