Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Researchers Pinpoint Patients Who Receive Greatest Benefit from Heart Failure Treatment

Mild heart failure patients with a particular condition that results in disorganized electrical activity throughout the heart benefit substantially from cardiac resynchronization therapy with defibrillator (CRT–D), according to a study published in the American Heart Association journal Circulation.

In patients with the condition, known as left bundle branch block or LBBB, CRT-D therapy reduced heart failure progression and the risk of ventricular tachyarrhythmias, fast and potentially life-threatening heart rhythms. Heart failure patients without LBBB did not receive any benefit from the therapy.

The analysis, based on the major study which tested the device – the MADIT-CRT trial – led the FDA to extend the approval of the CRT-D in September 2010 to patients with mild heart failure and LBBB to prevent progression to advanced heart failure. The device, developed by Boston Scientific, was originally approved to treat patients with severe heart failure.

Cardiac resynchronization therapy with defibrillator (CRT–D)“This study allowed us to identify the specific set of patients that receive the greatest benefit from this device,” said Wojciech Zareba, M.D., Ph.D., lead study author and director of the Heart Research Follow-up Program at the University of Rochester Medical Center. “Our analysis highlights the fact that this therapy is not equally effective in all mild heart failure patients and was the basis of the FDA’s approval of the therapy only in patients with left bundle branch block.”

Zareba’s team found that patients with LBBB who received CRT-D therapy had a significant 53 percent reduction in the risk of a heart failure event, such as being hospitalized with heart failure symptoms, or death, compared to LBBB patients who only received an implantable cardioverter defibrillator (ICD). The risk of ventricular tachyarrhythmias was also considerably less in LBBB patients with CRT-D.

Arthur J. Moss, M.D.CRT-D therapy combines an ICD, which senses dangerous abnormal heart rhythms and attempts to shock the heart back into a normal rhythm, with cardiac resynchronization therapy (CRT), which coordinates the beating of the heart so it can pump blood throughout the body more effectively.

The study included 1,817 patients and researchers analyzed electrocardiograms – maps of the heart’s electrical activity – to determine which patients had electrical disturbances and what type. Seventy percent of study participants had LBBB. LBBB patients were more often female and had higher rates of non-ischemic heart disease, a disorder typically characterized by inflammatory scarring of the heart muscle.

Study authors evaluated the effects of CRT-D versus ICD therapy in patients with and without LBBB. They found that in LBBB patients, CRT-D therapy effectively prevented deterioration of the heart, otherwise known as cardiac remodeling, by preventing enlargement of the heart with more effective contraction of the heart.

“We believe this therapy is so effective in patients with LBBB because their hearts don’t contract in a synchronous way, rather, the pumping action is quite out of sync,” noted Zareba. “CRT-D therapy paces the heart and makes these patients much better very quickly.”

Beyond mild heart failure patients, the results are leading experts to rethink current guidelines recommending the use of CRT-D therapy for all advanced heart failure patients. In this age of personalized medicine, as treatments are continually directed towards subsets of patients with particular characteristics or biologic markers, the group of advanced heart failure patients that receive CRT-D therapy may be narrowed to those with LBBB, as well.

The MADIT-CRT trial, led by Arthur J. Moss, M.D., cardiologist at the University of Rochester Medical Center, was supported by a research grant from Boston Scientific to the University of Rochester. The sub-analysis, led by Zareba, was also sponsored by Boston Scientific.

For Media Inquiries:
Emily Boynton
Email Emily Boynton

Emily Boynton | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht NIH scientists describe potential antibody treatment for multidrug-resistant K. pneumoniae
14.03.2018 | NIH/National Institute of Allergy and Infectious Diseases

nachricht Researchers identify key step in viral replication
13.03.2018 | University of Pittsburgh Schools of the Health Sciences

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

TRAPPIST-1 planets provide clues to the nature of habitable worlds

21.03.2018 | Physics and Astronomy

The search for dark matter widens

21.03.2018 | Materials Sciences

Natural enemies reduce pesticide use

21.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>