Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers map new path to colon cancer therapy

16.12.2008
University of Texas Medical Branch at Galveston researchers have identified a promising new target in the battle against colorectal cancer — a biochemical pathway critical to the spread of tumors to new locations in the body.

If this "survival pathway" can be successfully blocked under clinical conditions, the result would be a much-needed new therapy for colorectal cancer, the second leading cause of cancer death in the United States.

The researchers' findings, published online the week of December 15 in the Proceedings of the National Academy of Sciences, focus on an enzyme known as Akt2, which is often also found at high levels in association with prostate, ovarian, breast and pancreatic cancers.

Drawing on data from human colorectal cancer tissue samples, athymic "nude" mouse experiments and cell-culture studies and probing enzyme interactions with small interfering RNA, the scientists determined that Akt2 was critical to the survival of colorectal cancer cells in the late stages of the dangerous process of metastasis— the development of secondary tumors at a distance from a primary tumor. At the same time, they also mapped the enzyme's interactions with other important proteins involved in colorectal cancer metastasis, laying the groundwork for the development of new therapies to stop the cancer's spread.

"Metastasis is a really complicated process," said Dr. Piotr G. Rychahou, lead author of the paper and an instructor in the UTMB department of surgery. "Through a complex cascade of events, cancer cells escape from the original tumor and invade surrounding tissues until they reach a blood or lymphatic vessel. Next, they cross the wall of the vessel and enter the circulation in order to reach a target organ—again crossing through the vessel wall —and grow into secondary tumors that we actually detect in patients. To survive this hazardous solo journey, invade a foreign organ and proliferate there, cancer cells need support from intracellular survival pathways. Akt2 is part of the PI3-kinase / Akt pathway, one of the strongest pro-survival signaling pathways."

Rychahou and his colleagues, including senior author and director of the UTMB Sealy Center for Cancer Cell Biology Dr. B. Mark Evers, suspected from previous work that Akt2 was significant in colorectal cancer metastasis. To profile the enzyme's involvement in metastasis, they started at the end of the metastatic road: examining tumor samples from patients with metastatic colorectal cancer and confirming that high levels of the enzyme were present.

Next, they conducted a series of experiments with athymic "nude" mice (mice bred to lack an immune response), injecting them with different colorectal cancer cell lines and using custom-designed siRNA treatments to decrease and increase the activity of Akt2, its relative Akt1 and the tumor-suppressing protein PTEN.

"When we decreased the Akt2 expression, we found there was really a significant difference," Rychahou said. "Akt2 is essential for the later stages of colon tumor metastasis, but we also found that increased Akt2 alone is not enough for the growth of secondary tumors. For that, you need continuous PI3-kinase pathway stimulation and activation which can occur with absence of PTEN in these tumors."

Discoveries such as these, according to Evers, are "crucial to providing more directed therapies for the treatment of colorectal cancer metastasis based upon inhibition of specific components of the PI3-kinase pathway, thus allowing for a more personalized treatment regimen with potentially fewer side effects"

Marsha Canright | EurekAlert!
Further information:
http://www.utmb.edu

More articles from Health and Medicine:

nachricht On track to heal leukaemia
18.01.2017 | Universitätsspital Bern

nachricht Penn vet research identifies new target for taming Ebola
12.01.2017 | University of Pennsylvania

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>