Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers map minority microbes in the colon

03.08.2011
They make up less than one-hundredth of 1 percent of the microbes that live in the colon, but the bacteria and archaea that sop up hydrogen in the gut are fundamental to colon health.

In a new study, researchers take a first up close look at these “hydrogenotrophic” microbes, mapping where they live and how abundant they are in different parts of the lower intestine.

The findings are reported in the International Society for Microbial Ecology Journal.

This is the first study to sample these – or any other – microbes at specific locales in the colon, said University of Illinois animal sciences and Institute for Genomic Biology professor Rex Gaskins, who led the research with Carle Foundation gastroenterologist Dr. Eugene Greenberg. These organisms are particularly difficult to get at because they inhabit a thick layer of protective mucous that lines the colon. Previous studies looked only at microbes passed in stool, Gaskins said.

“With those methods, the less abundant taxa were often undetected,” he said. “Little was known about their ecology, or the extent to which the mucosa is colonized and what kind of variation exists.”

This is also the first study to compare the diversity and abundance of colonic microbes in multiple (in this case 25) healthy individuals, he said.

Scientists have known for decades that various microbes in the colon collaborate to ferment undigested food and degrade and dispose of the byproducts of fermentation. (M.P. Bryant, who was an animals sciences professor at Illinois, discovered the first hydrogen-based symbiotic relationship among microbes of the gut in the 1960s.)

Disruptions of the colonic ecosystem can have profound implications for human health, Greenberg said. Although there is a genetic component as well, evidence suggests that inflammatory bowel disease (which includes Crohn’s disease and ulcerative colitis) emerges in response to a microbial imbalance, he said. A study led by Gaskins in 2006 demonstrated for the first time that hydrogen sulfide, a major byproduct of bacterial fermentation in the gut, is genotoxic (damaging to DNA) and may lead to colon cancer.

“We’re getting closer and closer to looking at the microbiological origin of many diseases,” Greenberg said.

To get a better picture of the microbes in colonic mucosa, the researchers analyzed biopsies obtained from healthy subjects during routine colonoscopy exams. They sampled the right (ascending) and left (descending) colon as well as the rectum, then looked for genes that contribute to different hydrogen-consuming metabolic pathways.

The researchers found that all of the subjects harbored three important classes of hydrogen-consuming microbes: methanogens, which convert hydrogen to methane; acetogens, which make acetate from carbon dioxide and hydrogen; and sulfate-reducing bacteria, which expel hydrogen sulfide gas.

Methanogens accounted for about half of the microbes seen in each region of the colon and “become more abundant as you advance toward the rectum,” said postdoctoral researcher Franck Carbonero, an author on the study.

Sulfate-reducing bacteria (SRB) thrive in the presence of sulfate (a byproduct of eating foods such as meat, milk or eggs that have high levels of sulfur-containing amino acids).

The SRB generally outnumbered acetogens in the right colon, Carbonero said, while acetogens were more abundant than SRB in the left colon and rectum.

The researchers found variation among individual study subjects, particularly in the abundance of the three classes of microbes at different biopsy sites. And the team made a surprising discovery when analyzing biopsies taken less than a centimeter apart: microbial diversity can occur even at this small scale.

“These data indicate that if you get down to the scale at which these microbes make their living, perhaps it’s not all the same,” Gaskins said. “We haven’t begun yet to think at that spatial scale.”

The finding is relevant because disease tends to originate in very specific regions of the colon, Greenberg said. Ulcerative colitis starts at the rectum and then proceeds “upriver,” he said. “When you see Crohn’s disease you see an area of involvement, then it’s normal and then you see another area of involvement. And if you do surgery and remove the disease, the disease almost always recurs from the point of removal because – we believe – it’s been reseeded with microbes.”

Future studies will examine the role of hydrogenotrophic microbes in constipation and will look at how diet affects the composition and abundance of microbes in the colon, the researchers said.

The Carle Foundation and the Carle Hospital-University of Illinois Translational Research Program supported this research.

Editor’s notes: To reach Rex Gaskins, call 217- 244-3165; email hgaskins@illinois.edu.

The paper, “Abundance and Diversity of Mucosa-Associated Hydrogenotrophic Microbes in the Healthy Human Colon,” is available online or from the U. of I. News Bureau

Diana Yates | University of Illinois
Further information:
http://www.illinois.edu

More articles from Health and Medicine:

nachricht A promising target for kidney fibrosis
21.04.2017 | Brigham and Women's Hospital

nachricht Stem cell transplants: activating signal paths may protect from graft-versus-host disease
20.04.2017 | Technische Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Molecular libraries for organic light-emitting diodes

24.04.2017 | Life Sciences

Research sheds new light on forces that threaten sensitive coastlines

24.04.2017 | Earth Sciences

Making lightweight construction suitable for series production

24.04.2017 | Machine Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>