Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Investigate How Well Protective Headgear Works for Small Children Participating in Winter Activities

24.01.2012
During the winter months, especially in northern climates, parents bundle up their children in preparation for winter activities such as tobogganing, ice skating and ice hockey, and skiing.

In addition to layers of warm clothing, gloves and boots, parents often use whatever athletic headgear is available to mitigate the potential hazards of winter sports and play. Currently no helmets are specifically designed to protect children’s heads from the stresses and forces that may be encountered in activities such as those mentioned above.

That fact led researchers at the University of Ottawa and Children’s Hospital of Eastern Ontario (Ottawa, Canada) to undertake a laboratory investigation to see just how well available protective headgear would fare when used for winter activities. Their focus was on helmets used to protect the heads of children younger than seven years of age. The headgear tested included bicycle, ice hockey, and alpine ski helmets, because these are reportedly the helmets most commonly used to protect small children during winter activities. Findings of the study can be found in the article “Performance analysis of winter activity protection headgear for young children. Laboratory investigation,” published online today in the Journal of Neurosurgery: Pediatrics (: http://thejns.org/doi/full/10.3171/2011.11.PEDS11299).

Blaine Hoshizaki, PhD, and colleagues used a monorail drop tower to simulate the types of impact that can be sustained by a child’s head during mishaps in tobogganing. The various helmets were mounted on a head form representing the skull of a six-year-old child. The motion of the “head” within the helmet when impact occurred was measured using accelerometers and recorded for a comparison of the protection afforded by the different helmets. The researchers looked at both low-velocity impacts (such as those occurring in a short fall) and high-velocity impacts (such as those sustained when a child slides downhill into an object). Impacts coming from the front and side were examined, as were linear and angular accelerations.

At lower-velocity impacts (2 to 6 meters per second) the ice-hockey helmet was the most protective. At high-velocity impacts (8 meters per second) the bicycle helmet was more protective. In general, the alpine ski helmet did not protect “children’s heads” during falls and slides as well as the other headgear tested, a finding that was surprising to the authors since skiing involves the potential for both types of injuries.

No winner was identified by testing. No helmet performed adequately for all impacts studied. Thus the authors could not endorse a type of helmet to be used by small children during winter activities. Instead, they state that the findings of the study highlight the need for a new type of winter play helmet that can withstand both low- and high-velocity impacts — one that can protect the young child’s developing brain from potentially grave injury.

Hoshizaki B, Vassilyadi M, Post A, Oeur A. Performance analysis of winter activity protection headgear for young children. Laboratory investigation. J Neurosurg: Pediatrics, published ahead of print January 20, 2012; DOI: 10.3171/2011.11.PEDS11299.

Disclosure: This research was funded by ThinkFirst Canada, as represented by Dr. Vassilyadi, a co-author of this paper.

For additional information, contact:
Ms. Gillian Shasby, Director of Publications–Operations
Journal of Neurosurgery Publishing Group
1224 Jefferson Park Avenue, Suite 450
Charlottesville, VA 22903
E-mail: gshasby@thejns.org
Telephone: 434-924-5555
Fax: 434-924-5782
John Iwanski, Director of Member and Public Outreach
American Association of Neurological Surgeons
5550 Meadowbrook Drive
Rolling Meadows, IL 60008
E-mail: jai@aans.org
Telephone: 847-378-0517
Fax: 847-378-0617
The Journal of Neurosurgery: Pediatrics is a monthly peer-reviewed journal focused on diseases and disorders of the central nervous system and spine in children. This journal contains a variety of articles, including descriptions of preclinical and clinical research as well as case reports and technical notes. The Journal of Neurosurgery: Pediatrics is one of four monthly journals published by the JNS Publishing Group, the scholarly journal division of the American Association of Neurological Surgeons (http://www.AANS.org), an association dedicated to advancing the specialty of neurological surgery in order to promote the highest quality of patient care. The Journal of Neurosurgery: Pediatrics appears in print and on the Internet (http://www.thejns.org).

Founded in 1931 as the Harvey Cushing Society, the American Association of Neurological Surgeons (www.AANS.org) is a scientific and educational association with more than 8,000 members worldwide. The AANS is dedicated to advancing the specialty of neurological surgery in order to provide the highest quality of neurosurgical care to the public. All active members of the AANS are certified by the American Board of Neurological Surgery, the Royal College of Physicians and Surgeons (Neurosurgery) of Canada or the Mexican Council of Neurological Surgery, AC. Neurological surgery is the medical specialty concerned with the prevention, diagnosis, treatment and rehabilitation of disorders that affect the entire nervous system, including the spinal column, spinal cord, brain and peripheral nerves.

John Iwanski | Newswise Science News
Further information:
http://www.aans.org

More articles from Health and Medicine:

nachricht Routing gene therapy directly into the brain
07.12.2017 | Boston Children's Hospital

nachricht New Hope for Cancer Therapies: Targeted Monitoring may help Improve Tumor Treatment
01.12.2017 | Berliner Institut für Gesundheitsforschung / Berlin Institute of Health (BIH)

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

Liver Cancer: Lipid Synthesis Promotes Tumor Formation

12.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>