Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers improve efficiency of human walking

02.04.2015

Unpowered exoskeleton developed by Carnegie Mellon and North Carolina State researchers helps individuals walk using less energy

Humans have evolved to be incredibly efficient at walking. In fact, simulations of human locomotion show that walking on level ground and at a steady speed should theoretically require no power input at all.


This image shows walking with a passive-elastic ankle exoskeleton. An unpowered clutch engages a spring in parallel with the Achilles tendon when the foot is on the ground, offloading the calf muscles and making walking easier.

Credit: Stephen Thrift, North Carolina State University

But anyone who works on their feet or has taken an arduous hike knows otherwise. In fact, people expend more energy during walking than any other activity in daily life, and for the elderly and those with mobility issues, that energy can be precious.

For decades, engineers have envisioned systems that could make walking easier. In fact, so many researchers have tried to build unpowered exoskeletons and failed that it was hotly debated in the field whether it was even possible to improve the efficiency of walking without adding an external energy source.

In news reported today in Nature, researchers from Carnegie Mellon University and North Carolina State University have demonstrated an unpowered ankle exoskeleton that reduces the metabolic cost of walking by approximately 7 percent. The results are roughly the equivalent of taking off a 10-pound backpack, and are equivalent to savings from exoskeletons that use electrically-powered devices. The research was based upon work supported by the National Science Foundation.

"It's a real exciting milestone for the field of assistive devices," said Thomas Roberts, a professor of ecology and evolutionary biology at Brown University and an expert in the biomechanics of locomotion, who was not involved in the research. "They've taken an assistive device and lowered the cost of human walking. That's kind of a big deal because walking is already really cheap, and they did it with a very simple, but clever device."

The device is the result of eight years of patient and incremental work, mapped out on a whiteboard by Steve Collins and Greg Sawicki when they were graduate students together at the University of Michigan in 2007.

"Walking is more complicated than you might think," said Collins, an assistant professor of mechanical engineering at Carnegie Mellon. "Everyone knows how to walk, but you don't actually know how you walk."

Collins, Sawicki and co-author M. Bruce Wiggin succeeded where so many in the past had failed by performing careful analyses of the biomechanics of human walking and then designing a simple, ultra-light-weight device that relieved the calf muscle of its efforts when it wasn't doing any productive work.

Ultrasound imaging studies had revealed that the calf muscle exerts energy not only when propelling the body forward, but also when it performs a clutch-like action, holding the Achilles tendon taut.

"Studies show that the calf muscles are primarily producing force isometrically, without doing any work, during the stance phase of walking, but still using substantial metabolic energy," Collins explained. "This is the opposite of regenerative braking. It's as if every time you push on the brake pedal in your car, you burn a little bit of gas."

With this insight in mind, the team created an ankle exoskeleton that offloads some of the clutching muscle forces of the calf, reducing the overall metabolic rate.

A mechanical clutch engages when the foot is on the ground and disengages when the foot is in the air, to avoid interfering with toe clearance. This clutch takes over the effort of the calf, producing force without using consuming any energy and thereby reducing the overall metabolic rate.

In developing the device, the research team faced a challenge. When you place heavy objects on the legs, there's an initial penalty that increases your energy costs. Previous efforts had not been able to overcome that initial penalty. For that reason, it was critical to the researchers to keep the device light.

Over several years and many iterative designs, the team developed a carbon-fiber design that is ultra-light, yet rugged and functional. The entire device weighs approximately one pound per leg, or less than a work boot.

According to experts, the device is a triumph of elegance, simplicity and bio-specific interventions over complex, over-engineered designs.

"This unexpected and unprecedented result, with the potential to improve such a familiar human activity as walking, was discovered during a fundamental scientific study of mechanically augmented ankle function," said Jordan Berg, a program director at NSF. "It is a great example of how basic research can lead to new beneficial devices."

One of the long-term goals of Collins and Sawicki's project is to use lightweight, energy-efficient exoskeletons to assist individuals with mobility issues.

"You can imagine these lightweight efficient devices being worn on the affected limb to help people with the permanent aftereffects of stroke," Collins said. "We're hopeful that designs that use similar techniques can help people who have had a stroke walk more easily. We're still a little ways away from doing that, but we certainly plan to try."

In the future, the team intends to test the current device with individuals who have a variety of mobility issues to determine what designs might work best for different populations. They are also interested in developing exoskeleton components for the knee and the hip, where they believe they may be able to garner even larger benefits.

"As we understand human biomechanics better, we've begun to see wearable robotic devices that can restore or enhance human motor performance," said Collins. "This bodes well for a future with devices that are lightweight, energy-efficient, and relatively inexpensive, yet enhance human mobility."

Media Contact

Aaron Dubrow
adubrow@nsf.gov
703-292-4489

 @NSF

http://www.nsf.gov 

Aaron Dubrow | EurekAlert!

More articles from Health and Medicine:

nachricht Routing gene therapy directly into the brain
07.12.2017 | Boston Children's Hospital

nachricht New Hope for Cancer Therapies: Targeted Monitoring may help Improve Tumor Treatment
01.12.2017 | Berliner Institut für Gesundheitsforschung / Berlin Institute of Health (BIH)

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

Im Focus: A transistor of graphene nanoribbons

Transistors based on carbon nanostructures: what sounds like a futuristic dream could be reality in just a few years' time. An international research team working with Empa has now succeeded in producing nanotransistors from graphene ribbons that are only a few atoms wide, as reported in the current issue of the trade journal "Nature Communications."

Graphene ribbons that are only a few atoms wide, so-called graphene nanoribbons, have special electrical properties that make them promising candidates for the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

Blockchain is becoming more important in the energy market

05.12.2017 | Event News

 
Latest News

Making fuel out of thick air

08.12.2017 | Life Sciences

Rules for superconductivity mirrored in 'excitonic insulator'

08.12.2017 | Information Technology

Smartphone case offers blood glucose monitoring on the go

08.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>