Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers improve efficiency of human walking

02.04.2015

Unpowered exoskeleton developed by Carnegie Mellon and North Carolina State researchers helps individuals walk using less energy

Humans have evolved to be incredibly efficient at walking. In fact, simulations of human locomotion show that walking on level ground and at a steady speed should theoretically require no power input at all.


This image shows walking with a passive-elastic ankle exoskeleton. An unpowered clutch engages a spring in parallel with the Achilles tendon when the foot is on the ground, offloading the calf muscles and making walking easier.

Credit: Stephen Thrift, North Carolina State University

But anyone who works on their feet or has taken an arduous hike knows otherwise. In fact, people expend more energy during walking than any other activity in daily life, and for the elderly and those with mobility issues, that energy can be precious.

For decades, engineers have envisioned systems that could make walking easier. In fact, so many researchers have tried to build unpowered exoskeletons and failed that it was hotly debated in the field whether it was even possible to improve the efficiency of walking without adding an external energy source.

In news reported today in Nature, researchers from Carnegie Mellon University and North Carolina State University have demonstrated an unpowered ankle exoskeleton that reduces the metabolic cost of walking by approximately 7 percent. The results are roughly the equivalent of taking off a 10-pound backpack, and are equivalent to savings from exoskeletons that use electrically-powered devices. The research was based upon work supported by the National Science Foundation.

"It's a real exciting milestone for the field of assistive devices," said Thomas Roberts, a professor of ecology and evolutionary biology at Brown University and an expert in the biomechanics of locomotion, who was not involved in the research. "They've taken an assistive device and lowered the cost of human walking. That's kind of a big deal because walking is already really cheap, and they did it with a very simple, but clever device."

The device is the result of eight years of patient and incremental work, mapped out on a whiteboard by Steve Collins and Greg Sawicki when they were graduate students together at the University of Michigan in 2007.

"Walking is more complicated than you might think," said Collins, an assistant professor of mechanical engineering at Carnegie Mellon. "Everyone knows how to walk, but you don't actually know how you walk."

Collins, Sawicki and co-author M. Bruce Wiggin succeeded where so many in the past had failed by performing careful analyses of the biomechanics of human walking and then designing a simple, ultra-light-weight device that relieved the calf muscle of its efforts when it wasn't doing any productive work.

Ultrasound imaging studies had revealed that the calf muscle exerts energy not only when propelling the body forward, but also when it performs a clutch-like action, holding the Achilles tendon taut.

"Studies show that the calf muscles are primarily producing force isometrically, without doing any work, during the stance phase of walking, but still using substantial metabolic energy," Collins explained. "This is the opposite of regenerative braking. It's as if every time you push on the brake pedal in your car, you burn a little bit of gas."

With this insight in mind, the team created an ankle exoskeleton that offloads some of the clutching muscle forces of the calf, reducing the overall metabolic rate.

A mechanical clutch engages when the foot is on the ground and disengages when the foot is in the air, to avoid interfering with toe clearance. This clutch takes over the effort of the calf, producing force without using consuming any energy and thereby reducing the overall metabolic rate.

In developing the device, the research team faced a challenge. When you place heavy objects on the legs, there's an initial penalty that increases your energy costs. Previous efforts had not been able to overcome that initial penalty. For that reason, it was critical to the researchers to keep the device light.

Over several years and many iterative designs, the team developed a carbon-fiber design that is ultra-light, yet rugged and functional. The entire device weighs approximately one pound per leg, or less than a work boot.

According to experts, the device is a triumph of elegance, simplicity and bio-specific interventions over complex, over-engineered designs.

"This unexpected and unprecedented result, with the potential to improve such a familiar human activity as walking, was discovered during a fundamental scientific study of mechanically augmented ankle function," said Jordan Berg, a program director at NSF. "It is a great example of how basic research can lead to new beneficial devices."

One of the long-term goals of Collins and Sawicki's project is to use lightweight, energy-efficient exoskeletons to assist individuals with mobility issues.

"You can imagine these lightweight efficient devices being worn on the affected limb to help people with the permanent aftereffects of stroke," Collins said. "We're hopeful that designs that use similar techniques can help people who have had a stroke walk more easily. We're still a little ways away from doing that, but we certainly plan to try."

In the future, the team intends to test the current device with individuals who have a variety of mobility issues to determine what designs might work best for different populations. They are also interested in developing exoskeleton components for the knee and the hip, where they believe they may be able to garner even larger benefits.

"As we understand human biomechanics better, we've begun to see wearable robotic devices that can restore or enhance human motor performance," said Collins. "This bodes well for a future with devices that are lightweight, energy-efficient, and relatively inexpensive, yet enhance human mobility."

Media Contact

Aaron Dubrow
adubrow@nsf.gov
703-292-4489

 @NSF

http://www.nsf.gov 

Aaron Dubrow | EurekAlert!

More articles from Health and Medicine:

nachricht Penn vet research identifies new target for taming Ebola
12.01.2017 | University of Pennsylvania

nachricht The strange double life of Dab2
10.01.2017 | University of Miami Miller School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>