Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers take important step in unlocking what causes congenital heart disease

13.05.2013
Findings from the first large-scale sequencing analysis of congenital heart disease bring us closer to understanding this most common type of birth defect.

The analysis found that spontaneous, or de novo, mutations affect a specific biological pathway that is critical to aspects of human development, including the brain and heart. Congenital heart disease can cause infants to be born with structural heart problems, which can be serious or even life-threatening.

The findings, which were published online today in the journal Nature, will inform future research into the causes of congenital heart disease.

This research was conducted through the National Heart, Lung, and Blood Institute- (NHLBI) supported Pediatric Cardiac Genomics Consortium, an international, multi-center collaborative research effort. The NHLBI is part of the National Institutes of Health.

The researchers looked at 362 parent-offspring trios, each of which included a child with congenital heart disease and his or her healthy parents, as well as 264 healthy parent-offspring trios, which served as the control group. The team conducted an analysis using state-of-the-art sequencing and genome mapping techniques and found that the children with congenital heart disease had a greatly increased rate of spontaneous mutations among genes that are highly expressed, or active, in the developing heart. Specifically, the analysis found that about 10 percent of the participant cases were associated with spontaneous mutations that arise during fetal development. Many of these genes were involved in a specific pathway that controls and regulates gene expression, which provides some insight into how the defects arise.

The Pediatric Cardiac Genomics Consortium provided resources to recruit thousands of patients in a small amount of time and used advanced sequencing techniques to identify genes that are implicated in congenital heart disease.

Future research aims to better understand how congenital heart disease develops in order to improve treatment and perhaps eventually prevent congenital heart disease in the early stages of heart formation.

Jonathan R. Kaltman, M.D., chief of the Heart Development and Structural Diseases Branch in the NHLBI's Division of Cardiovascular Sciences and coauthor of the paper, is available to comment on the findings and implications of this research.

For Dr. Kaltman's complete bio, please visit: http://www.nhlbi.nih.gov/news/spokespeople/kaltman-jonathan.html

For a complete list of the Pediatric Cardiac Genomics Consortium Centers involved in this effort, please visit: http://www.benchtobassinet.net/PCGCcenters.asp

Supplemental Information:
NHLBI Bench to Bassinet program website
http://www.benchtobassinet.net/
Health Topic: What are congenital heart defects?
http://www.nhlbi.nih.gov/health/health-topics/topics/chd/
NHLBI Story of Success: Congenital heart disease
http://www.nhlbi.nih.gov/news/spotlight/success/congenital-heart-disease.html
Media availability: Bench to bassinet program seeks congenital heart disease treatments
http://www.nih.gov/news/health/mar2010/nhlbi-16.htm
Children and Clinical Studies website
http://www.nhlbi.nih.gov/childrenandclinicalstudies/index.php
Part of the National Institutes of Health, the National Heart, Lung, and Blood Institute (NHLBI) plans, conducts, and supports research related to the causes, prevention, diagnosis, and treatment of heart, blood vessel, lung, and blood diseases; and sleep disorders. The Institute also administers national health education campaigns on women and heart disease, healthy weight for children, and other topics. NHLBI press releases and other materials are available online at http://www.nhlbi.nih.gov.

About the National Institutes of Health (NIH): NIH, the nation's medical research agency, includes 27 Institutes and Centers and is a component of the U.S. Department of Health and Human Services. NIH is the primary federal agency conducting and supporting basic, clinical, and translational medical research, and is investigating the causes, treatments, and cures for both common and rare diseases. For more information about NIH and its programs, visit http://www.nih.gov.

NIH...Turning Discovery Into Health

NHLBI Communications Office | EurekAlert!
Further information:
http://www.nhlbi.nih.gov

More articles from Health and Medicine:

nachricht Monitoring the heart's mitochondria to predict cardiac arrest?
21.09.2017 | Boston Children's Hospital

nachricht Highly precise wiring in the Cerebral Cortex
21.09.2017 | Max-Planck-Institut für Hirnforschung

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Comet or asteroid? Hubble discovers that a unique object is a binary

21.09.2017 | Physics and Astronomy

Cnidarians remotely control bacteria

21.09.2017 | Life Sciences

Monitoring the heart's mitochondria to predict cardiac arrest?

21.09.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>