Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers identify cause for severe pediatric epilepsy disorder

17.03.2009
Researchers at the University of California, San Diego School of Medicine have discovered that convulsive seizures in a form of severe epilepsy are generated, not on the brain's surface as expected, but from within the memory-forming hippocampus.

The scientists hope that their findings – based on a mouse model of severe epilepsy – may someday pave the way for improved treatments of childhood epilepsy, which affects more than two percent of children worldwide. Their study will be published online by the Proceedings of the National Academy of Science (PNAS) the week of March 16.

"A parent of an epileptic child will tell you that they think their child is going to die during their attacks," said senior author Joseph Gleeson, MD, director of the Neurogenetics Laboratory at the UC San Diego School of Medicine, professor in the department of neurosciences and Howard Hughes Medical Institute Investigator. "Parents of children with epilepsy, especially the most severe types of epilepsy, are desperate for a deeper understanding of the causes of the problems and for the development of new treatments."

One of the major causes of epilepsy in children is an alteration in the development of the cerebral cortex. The cerebral cortex is the main folded part of the brain, containing a large percentage of brain cells, and is integral to purposeful actions and thoughts. However, this complex structure is subject to all kinds of defects in development, many of them due to defective genes and many associated with epilepsy.

Cortical dysplasia, meaning disordered development of the cerebral cortex, is identified in 25 to 40 percent of children with the most severe and difficult-to-treat forms of epilepsy. These children often come to the attention of specialists due to stagnation in the acquisition of language and balance skills and accompanying epilepsy. The symptoms displayed by these children can range from very subtle – such as small muscle jerks or eyelid fluttering – to dramatic whole body, tonic-clonic spasms (a series of contractions and relaxations of the muscle) that can affect basic bodily function.

The Gleeson team, led by researchers Geraldine Kerjan, PhD and Hiroyuki Koizumi, PhD, has been studying a disorder called "lissencephaly." (In Greek, leios means smooth, and kephale means brain or head.) Children with lissencephaly have a smooth brain surface that lacks the normal hills and valleys that are characteristic of the human brain. The researchers were recently successful in developing a mouse model that showed some of the features of this disorder, usually the first step toward understanding the cause of a genetic disorder. But the severe epilepsy that is associated with lissencephaly was never displayed in any of the previous animals, so the team kept removing gene after gene until they hit upon a strain that showed epilepsy.

"We study the gene "doublecortin," which is defective in some forms of epilepsy and mental retardation in humans," said Kerjan, lead author of the study. "However, only after we removed a combination of two of the genes in the doublecortin family did we uncover epilepsy."

According to Gleeson, the findings were dramatic, as almost none of the mice in this strain survived to adulthood. Thinking that the deaths might be due to epilepsy, the scientists recorded electroencephalograms, which measure electrical activity produced by the firing of neurons in the brain, and found severe epilepsy in all of the mice tested. Even more surprising was the site of the epileptic focus – or site from which the seizures were generated – which was located beneath the surface of the brain, in the hippocampus.

"Researchers had thought that the cause of the seizures in this disease must be the brain surface, since this is the part that looks the most abnormal on brain MRI scans," said Gleeson. "However, we found that the epilepsy focus was actually deeper in the brain, within the hippocampus, the main memory-forming site."

The research team intends to continue studying in studying the mice, to explore potential mechanisms and utilize this model to test new treatments.

Debra Kain | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Health and Medicine:

nachricht Second cause of hidden hearing loss identified
20.02.2017 | Michigan Medicine - University of Michigan

nachricht Prospect for more effective treatment of nerve pain
20.02.2017 | Universität Zürich

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

NASA's fermi finds possible dark matter ties in andromeda galaxy

22.02.2017 | Physics and Astronomy

Wintering ducks connect isolated wetlands by dispersing plant seeds

22.02.2017 | Life Sciences

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>