Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers identify promising biomarkers and new therapeutic targets for kidney cancer

01.06.2012
Using blood, urine and tissue analysis of a unique mouse model, a team led by UC Davis researchers has identified several proteins as diagnostic biomarkers and potential therapeutic targets for kidney cancer. Subject to follow-up validation testing, inhibition of these proteins and several related pathways holds promise as a form of therapy to slow the growth of kidney tumors.

In a paper just published online in the journal Cancer Research, the researchers found high concentrations of specific proteins that point to alterations in three sequences of chemical reactions known as biochemical pathways of mice implanted with human kidney cancer cells. The findings suggest that cancerous tumors modulate the pathways, which in turn makes these pathways potential therapeutic targets.

Nicotinamide and cinnamoylglycine, which were altered as a signature of one of the pathways, are just two of approximately 2,000 chemicals, or metabolites, that the human body produces. Metabolites, referring to any substance produced by metabolism, are a reflection of the body's processes in real time. The field of study, known as metabolomics, enables researchers to discover biomarkers and to identify novel therapeutic targets.

The study used metabolomics techniques and instrumentation to simultaneously examine chemicals in two biofluids (urine and serum, or blood) as well as tissue from kidney cancer mice models. Seeking to describe the utility of these fluids as tumor indicators, they found that serum metabolomics analysis is the most accurate proxy of chemical changes that are related to kidney cancer.

"It's exciting to report that our identification of several important metabolic processes may well result in the discovery of diagnostic markers and new therapeutic targets for kidney cancers," said lead author Robert H. Weiss, a professor in the UC Davis Division of Nephrology, Department of Internal Medicine. Currently, there are no tests to easily identify kidney cancer and current treatments are not always successful, so these markers will be important tools for detection and new treatments of the disease.

For the study, researchers transplanted human kidney cancer cells into a mouse model capable of growing human tumors. Researchers compared the metabolites identified in the implanted mice against those in a control group of mice that had surgery, but no cancer cells implanted.

If further research with mouse models demonstrates that inhibition of the newly identified targets works in therapy, then preparation for human trials will be a next step.

"This research represents collaboration among many kinds of experts, all of whom are concerned that kidney cancer patients have too few treatment options, which often have debilitating side effects," said Weiss, who serves as chief of nephrology at the Sacramento Veterans' Administration Medical Center in addition to his work at UC Davis.

The research was funded by the National Institutes of Health and the Medical Service of the U.S. Department of Veterans' Affairs, grants 1R01CA135401-01A1 and 1R01DK082690-01A1. Other UC Davis authors were Sheila Ganti and Omran Abu Aboud of the Department of Internal Medicine, Sandra L. Taylor and Kyoungmi Kim of the Department of Public Health Sciences, Joy Yang of the Department of Urology, and Christopher Evans of the Comprehensive Cancer Center and Department of Urology. Authors also included Michael V. Osier of the Rochester Institute of Technology and Danny C. Alexander of Metabolon in Durham, N.C.

UC Davis Comprehensive Cancer Center
UC Davis Comprehensive Cancer Center is the only National Cancer Institute-designated center serving the Central Valley and inland Northern California, a region of more than 6 million people. Its specialists provide compassionate, comprehensive care for more than 9,000 adults and children every year, and access to more than 150 clinical trials at any given time.

Its innovative research program engages more than 280 scientists at UC Davis, Lawrence Livermore National Laboratory and Jackson Laboratory (JAX West), whose scientific partnerships advance discovery of new tools to diagnose and treat cancer. Through the Cancer Care Network, UC Davis collaborates with a number of hospitals and clinical centers throughout the Central Valley and Northern California regions to offer the latest cancer care. Its community-based outreach and education programs address disparities in cancer outcomes across diverse populations.

Dorsey Griffith | EurekAlert!
Further information:
http://www.cancer.ucdavis.edu.
http://www.ucdmc.ucdavis.edu

More articles from Health and Medicine:

nachricht Biofilm discovery suggests new way to prevent dangerous infections
23.05.2017 | University of Texas at Austin

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>