Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Researchers identify promising biomarkers and new therapeutic targets for kidney cancer

Using blood, urine and tissue analysis of a unique mouse model, a team led by UC Davis researchers has identified several proteins as diagnostic biomarkers and potential therapeutic targets for kidney cancer. Subject to follow-up validation testing, inhibition of these proteins and several related pathways holds promise as a form of therapy to slow the growth of kidney tumors.

In a paper just published online in the journal Cancer Research, the researchers found high concentrations of specific proteins that point to alterations in three sequences of chemical reactions known as biochemical pathways of mice implanted with human kidney cancer cells. The findings suggest that cancerous tumors modulate the pathways, which in turn makes these pathways potential therapeutic targets.

Nicotinamide and cinnamoylglycine, which were altered as a signature of one of the pathways, are just two of approximately 2,000 chemicals, or metabolites, that the human body produces. Metabolites, referring to any substance produced by metabolism, are a reflection of the body's processes in real time. The field of study, known as metabolomics, enables researchers to discover biomarkers and to identify novel therapeutic targets.

The study used metabolomics techniques and instrumentation to simultaneously examine chemicals in two biofluids (urine and serum, or blood) as well as tissue from kidney cancer mice models. Seeking to describe the utility of these fluids as tumor indicators, they found that serum metabolomics analysis is the most accurate proxy of chemical changes that are related to kidney cancer.

"It's exciting to report that our identification of several important metabolic processes may well result in the discovery of diagnostic markers and new therapeutic targets for kidney cancers," said lead author Robert H. Weiss, a professor in the UC Davis Division of Nephrology, Department of Internal Medicine. Currently, there are no tests to easily identify kidney cancer and current treatments are not always successful, so these markers will be important tools for detection and new treatments of the disease.

For the study, researchers transplanted human kidney cancer cells into a mouse model capable of growing human tumors. Researchers compared the metabolites identified in the implanted mice against those in a control group of mice that had surgery, but no cancer cells implanted.

If further research with mouse models demonstrates that inhibition of the newly identified targets works in therapy, then preparation for human trials will be a next step.

"This research represents collaboration among many kinds of experts, all of whom are concerned that kidney cancer patients have too few treatment options, which often have debilitating side effects," said Weiss, who serves as chief of nephrology at the Sacramento Veterans' Administration Medical Center in addition to his work at UC Davis.

The research was funded by the National Institutes of Health and the Medical Service of the U.S. Department of Veterans' Affairs, grants 1R01CA135401-01A1 and 1R01DK082690-01A1. Other UC Davis authors were Sheila Ganti and Omran Abu Aboud of the Department of Internal Medicine, Sandra L. Taylor and Kyoungmi Kim of the Department of Public Health Sciences, Joy Yang of the Department of Urology, and Christopher Evans of the Comprehensive Cancer Center and Department of Urology. Authors also included Michael V. Osier of the Rochester Institute of Technology and Danny C. Alexander of Metabolon in Durham, N.C.

UC Davis Comprehensive Cancer Center
UC Davis Comprehensive Cancer Center is the only National Cancer Institute-designated center serving the Central Valley and inland Northern California, a region of more than 6 million people. Its specialists provide compassionate, comprehensive care for more than 9,000 adults and children every year, and access to more than 150 clinical trials at any given time.

Its innovative research program engages more than 280 scientists at UC Davis, Lawrence Livermore National Laboratory and Jackson Laboratory (JAX West), whose scientific partnerships advance discovery of new tools to diagnose and treat cancer. Through the Cancer Care Network, UC Davis collaborates with a number of hospitals and clinical centers throughout the Central Valley and Northern California regions to offer the latest cancer care. Its community-based outreach and education programs address disparities in cancer outcomes across diverse populations.

Dorsey Griffith | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Advanced analysis of brain structure shape may track progression to Alzheimer's disease
26.10.2016 | Massachusetts General Hospital

nachricht Indian roadside refuse fires produce toxic rainbow
26.10.2016 | Duke University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

Gene therapy shows promise for treating Niemann-Pick disease type C1

27.10.2016 | Life Sciences

Solid progress in carbon capture

27.10.2016 | Power and Electrical Engineering

More VideoLinks >>>