Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers identify innate channel that protects against pain

22.01.2014
Scientists have identified a channel present in many pain detecting sensory neurons that acts as a 'brake', limiting spontaneous pain. It is hoped that the new research, published today [22 January] in the Journal of Neuroscience, will ultimately contribute to new pain relief treatments.

Spontaneous pain is ongoing pathological pain that occurs constantly (slow burning pain) or intermittently (sharp shooting pain) without any obvious immediate cause or trigger. The slow burning pain is the cause of much suffering and debilitation. Because the mechanisms underlying this type of slow burning pain are poorly understood, it remains very difficult to treat effectively.

Spontaneous pain of peripheral origin is pathological, and is associated with many types of disease, inflammation or damage of tissues, organs or nerves (neuropathic pain). Examples of neuropathic pain are nerve injury/crush, post-operative pain, and painful diabetic neuropathy.

Previous research has shown that this spontaneous burning pain is caused by continuous activity in small sensory nerve fibers, known as C-fiber nociceptors (pain neurons). Greater activity translates into greater pain, but what causes or limits this activity remained poorly understood.

Now, new research from the University of Bristol, has identified a particular ion channel present exclusively in these C-fiber nociceptors This ion channel, known as TREK2, is present in the membranes of these neurons, and the researchers showed that it provides a natural innate protection against this pain.

Ion channels are specialised proteins that are selectively permeable to particular ions. They form pores through the neuronal membrane. Leak potassium channels are unusual, in that they are open most of the time allowing positive potassium ions (K+) to leak out of the cell. This K+ leakage is the main cause of the negative membrane potentials in all neurons. TREK2 is one of these leak potassium channels. Importantly, the C-nociceptors that express TREK2 have much more negative membrane potentials than those that do not.

Researchers showed that when TREK2 was removed from the proximity of the cell membrane, the potential in those neurons became less negative. In addition, when the neuron was prevented from synthesizing the TREK2, the membrane potential also became less negative.

They also found that spontaneous pain associated with skin inflammation, was increased by reducing the levels of synthesis of TREK2 in these C-fiber neurons.

They concluded that in these C-fiber nociceptors the TREK2 keeps membrane potentials more negative, stabilizing their membrane potential, reducing firing and thus limiting the amount of spontaneous burning pain.

Professor Sally Lawson, from the School of Physiology and Pharmacology at Bristol University, explained: "It became evident that TREK2 kept the C-fiber nociceptor membrane at a more negative potential. Despite the difficulties inherent in the study of spontaneous pain, and the lack of any drugs that can selectively block or activate TREK2, we demonstrated that TREK2 in C-fiber nociceptors is important for stabilizing their membrane potential and decreasing the likelihood of firing. It became apparent that TREK2 was thus likely to act as a natural innate protection against pain. Our data supported this, indicating that in chronic pain states, TREK2 is acting as a brake on the level of spontaneous pain."

Dr Cristian Acosta, the first author on the paper and now working at the Institute of Histology and Embriology of Mendoza in Argentina, said "Given the role of TREK2 in protecting against spontaneous pain, it is important to advance our understanding of the regulatory mechanisms controlling its expression and trafficking in these C-fiber nociceptors. We hope that this research will enable development of methods of enhancing the actions of TREK2 that could potentially some years hence provide relief for sufferers of ongoing spontaneous burning pain."

The research, funded by the Wellcome Trust, was carried out in the School of Physiology and Pharmacology at the University of Bristol.

Notes to the editor:

Paper
'TREK2 Expressed Selectively in IB4-Binding C-Fiber Nociceptors Hyperpolarizes Their Membrane Potentials and Limits Spontaneous Pain' by Cristian Acosta, Laiche Djouhri, Roger Watkins, Carol Berry, Kirsty Bromage and Sally Lawson in the Journal of Neuroscience.
About the Wellcome Trust

The Wellcome Trust is a global charitable foundation dedicated to achieving extraordinary improvements in human and animal health. It supports the brightest minds in biomedical research and the medical humanities. The Trust's breadth of support includes public engagement, education and the application of research to improve health. It is independent of both political and commercial interests.

Issued by Philippa Walker, Press Officer at the University of Bristol, on 0117 9288086 or Philippa.walker@bristol.ac.uk

Philippa Walker | EurekAlert!
Further information:
http://www.wellcome.ac.uk
http://www.bristol.ac.uk

More articles from Health and Medicine:

nachricht UV light robot to clean hospital rooms could help stop spread of 'superbugs'
15.04.2015 | Texas A&M University

nachricht Heart cells regenerated in mice
14.04.2015 | Weizmann Institute of Science

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Astronomers reveal supermassive black hole's intense magnetic field

Astronomers from Chalmers University of Technology have used the giant telescope Alma to reveal an extremely powerful magnetic field very close to a supermassive black hole in a distant galaxy

Astronomers from Chalmers University of Technology have used the giant telescope Alma to reveal an extremely powerful magnetic field very close to a...

Im Focus: A “pin ball machine” for atoms and photons

A team of physicists from MPQ, Caltech, and ICFO proposes the combination of nano-photonics with ultracold atoms for simulating quantum many-body systems and creating new states of matter.

Ultracold atoms in the so-called optical lattices, that are generated by crosswise superposition of laser beams, have been proven to be one of the most...

Im Focus: UV light robot to clean hospital rooms could help stop spread of 'superbugs'

Can a robot clean a hospital room just as well as a person?

According to new research out of the Texas A&M Health Science Center College of Medicine, that is indeed the case. Chetan Jinadatha, M.D., M.P.H., assistant...

Im Focus: Graphene pushes the speed limit of light-to-electricity conversion

Researchers from ICFO, MIT and UC Riverside have been able to develop a graphene-based photodetector capable of converting absorbed light into an electrical voltage at ultrafast timescales

The efficient conversion of light into electricity plays a crucial role in many technologies, ranging from cameras to solar cells.

Im Focus: Study shows novel pattern of electrical charge movement through DNA

Electrical charges not only move through wires, they also travel along lengths of DNA, the molecule of life. The property is known as charge transport.

In a new study appearing in the journal Nature Chemistry, authors, Limin Xiang, Julio Palma, Christopher Bruot and others at Arizona State University's...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

HHL's Entrepreneurship Conference on FinTech

13.04.2015 | Event News

World Conference On Regenerative Medicine 2015: Registration And Abstract Submission Now Open

25.03.2015 | Event News

University presidents from all over the world meet in Hamburg

19.03.2015 | Event News

 
Latest News

Engineer Improves Rechargeable Batteries with MoS2 Nano 'Sandwich'

17.04.2015 | Power and Electrical Engineering

Comparing Climate Models to Real World Shows Differences in Precipitation Intensity

17.04.2015 | Earth Sciences

A blueprint for clearing the skies of space debris

17.04.2015 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>