Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers identify innate channel that protects against pain

22.01.2014
Scientists have identified a channel present in many pain detecting sensory neurons that acts as a 'brake', limiting spontaneous pain. It is hoped that the new research, published today [22 January] in the Journal of Neuroscience, will ultimately contribute to new pain relief treatments.

Spontaneous pain is ongoing pathological pain that occurs constantly (slow burning pain) or intermittently (sharp shooting pain) without any obvious immediate cause or trigger. The slow burning pain is the cause of much suffering and debilitation. Because the mechanisms underlying this type of slow burning pain are poorly understood, it remains very difficult to treat effectively.

Spontaneous pain of peripheral origin is pathological, and is associated with many types of disease, inflammation or damage of tissues, organs or nerves (neuropathic pain). Examples of neuropathic pain are nerve injury/crush, post-operative pain, and painful diabetic neuropathy.

Previous research has shown that this spontaneous burning pain is caused by continuous activity in small sensory nerve fibers, known as C-fiber nociceptors (pain neurons). Greater activity translates into greater pain, but what causes or limits this activity remained poorly understood.

Now, new research from the University of Bristol, has identified a particular ion channel present exclusively in these C-fiber nociceptors This ion channel, known as TREK2, is present in the membranes of these neurons, and the researchers showed that it provides a natural innate protection against this pain.

Ion channels are specialised proteins that are selectively permeable to particular ions. They form pores through the neuronal membrane. Leak potassium channels are unusual, in that they are open most of the time allowing positive potassium ions (K+) to leak out of the cell. This K+ leakage is the main cause of the negative membrane potentials in all neurons. TREK2 is one of these leak potassium channels. Importantly, the C-nociceptors that express TREK2 have much more negative membrane potentials than those that do not.

Researchers showed that when TREK2 was removed from the proximity of the cell membrane, the potential in those neurons became less negative. In addition, when the neuron was prevented from synthesizing the TREK2, the membrane potential also became less negative.

They also found that spontaneous pain associated with skin inflammation, was increased by reducing the levels of synthesis of TREK2 in these C-fiber neurons.

They concluded that in these C-fiber nociceptors the TREK2 keeps membrane potentials more negative, stabilizing their membrane potential, reducing firing and thus limiting the amount of spontaneous burning pain.

Professor Sally Lawson, from the School of Physiology and Pharmacology at Bristol University, explained: "It became evident that TREK2 kept the C-fiber nociceptor membrane at a more negative potential. Despite the difficulties inherent in the study of spontaneous pain, and the lack of any drugs that can selectively block or activate TREK2, we demonstrated that TREK2 in C-fiber nociceptors is important for stabilizing their membrane potential and decreasing the likelihood of firing. It became apparent that TREK2 was thus likely to act as a natural innate protection against pain. Our data supported this, indicating that in chronic pain states, TREK2 is acting as a brake on the level of spontaneous pain."

Dr Cristian Acosta, the first author on the paper and now working at the Institute of Histology and Embriology of Mendoza in Argentina, said "Given the role of TREK2 in protecting against spontaneous pain, it is important to advance our understanding of the regulatory mechanisms controlling its expression and trafficking in these C-fiber nociceptors. We hope that this research will enable development of methods of enhancing the actions of TREK2 that could potentially some years hence provide relief for sufferers of ongoing spontaneous burning pain."

The research, funded by the Wellcome Trust, was carried out in the School of Physiology and Pharmacology at the University of Bristol.

Notes to the editor:

Paper
'TREK2 Expressed Selectively in IB4-Binding C-Fiber Nociceptors Hyperpolarizes Their Membrane Potentials and Limits Spontaneous Pain' by Cristian Acosta, Laiche Djouhri, Roger Watkins, Carol Berry, Kirsty Bromage and Sally Lawson in the Journal of Neuroscience.
About the Wellcome Trust

The Wellcome Trust is a global charitable foundation dedicated to achieving extraordinary improvements in human and animal health. It supports the brightest minds in biomedical research and the medical humanities. The Trust's breadth of support includes public engagement, education and the application of research to improve health. It is independent of both political and commercial interests.

Issued by Philippa Walker, Press Officer at the University of Bristol, on 0117 9288086 or Philippa.walker@bristol.ac.uk

Philippa Walker | EurekAlert!
Further information:
http://www.wellcome.ac.uk
http://www.bristol.ac.uk

More articles from Health and Medicine:

nachricht One gene closer to regenerative therapy for muscular disorders
01.06.2017 | Cincinnati Children's Hospital Medical Center

nachricht The gut microbiota plays a key role in treatment with classic diabetes medication
01.06.2017 | University of Gothenburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>