Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Researchers identify gene linked with early epilepsy


Treatment may help prevent poor brain development in some cases

Certain types of early-onset epilepsy are caused by previously unknown mutations of a potassium channel gene, KCNA2. The mutations disrupt the electrical balance in the brain in two ways. In some patients, the flow of potassium is greatly reduced; while in others, it is raised enormously.

Both states can lead to hard-to-treat epileptic seizures. Mental and motor development can come to a stop, or even to regress. These findings were made by a group of European scientists led by researchers at the Universities of Leipzig and Tübingen. Their results are published in the latest Nature Genetics.

Among the things the brain needs in order to function is the interaction of many different ion channels, which regulate electrical signals by keeping a delicate balance between the influences which make cells rest or become excited. The ion channels are located in the cell wall of a neuron, together with many other pores and channels.

“The potassium channel KCNA2 is one of many channels. It regulates the flow of potassium ions by opening and shutting, thereby also regulating the electrical excitability of the neurons in the brain,” explains Professor Johannes Lemke, head of Leipzig University Hospitals’ Institute of Human Genetics. Mutations in various ion channels are one of the main causes of epilepsy.

“That is why identifying each mutation in the ion channel is important for diagnosing the individual epilepsy syndrome and finding ways of treating it,” says Professor Holger Lerche, of Tübingen’s Hertie Institute for Clinical Brain Research (HIH) and medical director of Neurology and Epileptology at the Tübingen University Hospitals.

The researchers discovered that the mutations disrupt the ion channel’s function either by cutting the flow of potassium, leading to a loss of function; or by increasing potassium flow, leading to an excess gain of function. Patients demonstrating a loss of function had their first epileptic seizures starting at the age of around one, but the attacks ceased during childhood or in the patient’s teenage years.

For patients with increased function, however, epileptic seizures began even earlier and recurred into adulthood. The degree of mental disability and related problems was greater in the latter group. The types of early-childhood-onset epilepsy caused by potassium ion channel mutations comprise a field of study all their own within epileptic encephalopathy, the severe epilepsies which start early in life and which are linked with various degrees of developmental disruptions, reduced intelligence and other neuropsychiatric symptoms such as autism and disruptions to voluntary muscle coordination (ataxia).

For patients whose potassium flows are too high, there is an immediate treatment option in the form of 4-aminopyridine, an approved drug which specifically blocks the relevant ion channel. This treatment is to be applied. The researchers and doctors hope it will lead to a reduction of seizures and improve mental abilities. However, it is not expected that the treatment can correct severe mental retardation due to faulty neural networks or deformed neurons caused during the development of the brain.

For this reason, it is important to identify the genetic defects as early as possible in the brain - so as to prevent developmental retardation as far as possible. As to the patients with a loss of function in their potassium flows, the researchers aim to conduct further experiments into exactly how the epileptic seizures arise - so as to find new ways of treating the disorder. Then they would be able to improve the lot of a small proportion of patients with epileptic ecephalopathy with improved and individualized therapies.

De novo loss- or gain-of-function mutations in KCNA2 cause epileptic encephalopathy), Nature Genetics (2015) doi:10.1038/ng.3239; Published online 09 March 2015;

Silke Jakobi | idw - Informationsdienst Wissenschaft
Further information:

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>