Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers identify biomarkers for possible blood test to predict suicide risk

20.08.2013
Indiana University School of Medicine researchers have found a series of RNA biomarkers in blood that may help identify who is at risk for committing suicide.

In a study reported Aug. 20 in the advance online edition of the Nature Publishing Group journal Molecular Psychiatry, the researchers said the biomarkers were found at significantly higher levels in the blood of both bipolar disorder patients with thoughts of suicide as well in a group of people who had committed suicide.

Principal investigator Alexander B. Niculescu III, M.D., Ph.D., associate professor of psychiatry and medical neuroscience at the IU School of Medicine and attending psychiatrist and research and development investigator at the Richard L. Roudebush Veterans Affairs Medical Center in Indianapolis, said he believes the results provide a first "proof of principle" for a test that could provide an early warning of somebody being at higher risk for an impulsive suicide act.

"Suicide is a big problem in psychiatry. It's a big problem in the civilian realm, it's a big problem in the military realm and there are no objective markers," said Dr. Niculescu, director of the Laboratory of Neurophenomics at the Institute of Psychiatric Research at the IU School of Medicine.

"There are people who will not reveal they are having suicidal thoughts when you ask them, who then commit it and there's nothing you can do about it. We need better ways to identify, intervene and prevent these tragic cases," he said.

Over a three-year period, Niculescu and his colleagues followed a large group of patients diagnosed with bipolar disorder, completing interviews and taking blood samples every three to six months. The researchers conducted a variety of analyses of the blood of a subset of participants who reported a dramatic shift from no suicidal thoughts to strong suicidal ideation. They identified differences in gene expression between the "low" and "high" states of suicidal thoughts and subjected those findings to a system of genetic and genomic analysis called Convergent Functional Genomics that identified and prioritized the best markers by cross-validation with other lines of evidence.

The researchers found that the marker SAT1 and a series of other markers provided the strongest biological "signal" associated with suicidal thoughts.

Next, to validate their findings, working with the local coroner's office, they analyzed blood samples from suicide victims and found that some of same top markers were significantly elevated.

Finally, the researchers analyzed blood test results from two additional groups of patients and found that high blood levels of the biomarkers were correlated with future suicide-related hospitalizations, as well as hospitalizations that had occurred before the blood tests.

"This suggests that these markers reflect more than just a current state of high risk, but could be trait markers that correlate with long term risk," said Dr. Niculescu.

Although confident in the biomarkers validity, Dr. Niculescu noted that a limitation is that the research subjects were all male.

"There could be gender differences," he said. "We would also like to conduct more extensive, normative studies, in the population at large."

In addition to extending the research to females to see if the same or other markers come into play, Dr. Niculescu and colleagues plan to conduct research among other groups, such as persons who have less impulsive, more deliberate and planned subtypes of suicide.

Nonetheless, Dr. Niculescu said, "These seem to be good markers for suicidal behavior in males who have bipolar mood disorders or males in the general population who commit impulsive violent suicide. In the future we want to study and assemble clinical and socio-demographic risk factors, along with our blood tests, to increase our ability to predict risk.

"Suicide is complex: in addition to psychiatric and addiction issues that make people more vulnerable, there are existential issues related to lack of satisfaction with one's life, lack of hope for the future, not feeling needed, and cultural factors that make suicide seem like an option."

He said he hopes such biomarkers, along with other tools, including neuropsychological tests and socio-demographic checklists currently in development by his group, ultimately can help identify people who are at risk, leading to pre-emptive intervention, counseling, and saved lives.

"Over a million people each year world-wide die from suicide and this is a preventable tragedy".

Additional investigators contributing to the research were Helen Le-Niculescu, Daniel F. Levey, Mikias Ayalew, Nikita Jain, Laura Palmer, Miranda Gavrin, Evan Winiger, Sughanda Bhosrekar, Robert Schweitzer, Ganesh Shankar, Mike Yard, George Sandusky and Anantha Shekhar of the IU School of Medicine; Mark Radel, Elizabeth Belanger, Hillary Duckworth, Kyle Olesek, and Jeffery Vergo of the Indianapolis Veterans Administration Medical Center; Alfarena Ballew of the Marion County (Ind.) Coroner's Office and Nicholas J. Schork, Sunil M. Kurian, Daniel R. Salomon and of The Scripps Research Institute.

The research was supported by an NIH Directors' New Innovator Award (1DP2OD007363) and a Veterans Administration Merit Award (1I01CX000139-01).

Eric Schoch | EurekAlert!
Further information:
http://www.iu.edu

More articles from Health and Medicine:

nachricht Penn vet research identifies new target for taming Ebola
12.01.2017 | University of Pennsylvania

nachricht The strange double life of Dab2
10.01.2017 | University of Miami Miller School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>