Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Researchers identify biomarkers for possible blood test to predict suicide risk

Indiana University School of Medicine researchers have found a series of RNA biomarkers in blood that may help identify who is at risk for committing suicide.

In a study reported Aug. 20 in the advance online edition of the Nature Publishing Group journal Molecular Psychiatry, the researchers said the biomarkers were found at significantly higher levels in the blood of both bipolar disorder patients with thoughts of suicide as well in a group of people who had committed suicide.

Principal investigator Alexander B. Niculescu III, M.D., Ph.D., associate professor of psychiatry and medical neuroscience at the IU School of Medicine and attending psychiatrist and research and development investigator at the Richard L. Roudebush Veterans Affairs Medical Center in Indianapolis, said he believes the results provide a first "proof of principle" for a test that could provide an early warning of somebody being at higher risk for an impulsive suicide act.

"Suicide is a big problem in psychiatry. It's a big problem in the civilian realm, it's a big problem in the military realm and there are no objective markers," said Dr. Niculescu, director of the Laboratory of Neurophenomics at the Institute of Psychiatric Research at the IU School of Medicine.

"There are people who will not reveal they are having suicidal thoughts when you ask them, who then commit it and there's nothing you can do about it. We need better ways to identify, intervene and prevent these tragic cases," he said.

Over a three-year period, Niculescu and his colleagues followed a large group of patients diagnosed with bipolar disorder, completing interviews and taking blood samples every three to six months. The researchers conducted a variety of analyses of the blood of a subset of participants who reported a dramatic shift from no suicidal thoughts to strong suicidal ideation. They identified differences in gene expression between the "low" and "high" states of suicidal thoughts and subjected those findings to a system of genetic and genomic analysis called Convergent Functional Genomics that identified and prioritized the best markers by cross-validation with other lines of evidence.

The researchers found that the marker SAT1 and a series of other markers provided the strongest biological "signal" associated with suicidal thoughts.

Next, to validate their findings, working with the local coroner's office, they analyzed blood samples from suicide victims and found that some of same top markers were significantly elevated.

Finally, the researchers analyzed blood test results from two additional groups of patients and found that high blood levels of the biomarkers were correlated with future suicide-related hospitalizations, as well as hospitalizations that had occurred before the blood tests.

"This suggests that these markers reflect more than just a current state of high risk, but could be trait markers that correlate with long term risk," said Dr. Niculescu.

Although confident in the biomarkers validity, Dr. Niculescu noted that a limitation is that the research subjects were all male.

"There could be gender differences," he said. "We would also like to conduct more extensive, normative studies, in the population at large."

In addition to extending the research to females to see if the same or other markers come into play, Dr. Niculescu and colleagues plan to conduct research among other groups, such as persons who have less impulsive, more deliberate and planned subtypes of suicide.

Nonetheless, Dr. Niculescu said, "These seem to be good markers for suicidal behavior in males who have bipolar mood disorders or males in the general population who commit impulsive violent suicide. In the future we want to study and assemble clinical and socio-demographic risk factors, along with our blood tests, to increase our ability to predict risk.

"Suicide is complex: in addition to psychiatric and addiction issues that make people more vulnerable, there are existential issues related to lack of satisfaction with one's life, lack of hope for the future, not feeling needed, and cultural factors that make suicide seem like an option."

He said he hopes such biomarkers, along with other tools, including neuropsychological tests and socio-demographic checklists currently in development by his group, ultimately can help identify people who are at risk, leading to pre-emptive intervention, counseling, and saved lives.

"Over a million people each year world-wide die from suicide and this is a preventable tragedy".

Additional investigators contributing to the research were Helen Le-Niculescu, Daniel F. Levey, Mikias Ayalew, Nikita Jain, Laura Palmer, Miranda Gavrin, Evan Winiger, Sughanda Bhosrekar, Robert Schweitzer, Ganesh Shankar, Mike Yard, George Sandusky and Anantha Shekhar of the IU School of Medicine; Mark Radel, Elizabeth Belanger, Hillary Duckworth, Kyle Olesek, and Jeffery Vergo of the Indianapolis Veterans Administration Medical Center; Alfarena Ballew of the Marion County (Ind.) Coroner's Office and Nicholas J. Schork, Sunil M. Kurian, Daniel R. Salomon and of The Scripps Research Institute.

The research was supported by an NIH Directors' New Innovator Award (1DP2OD007363) and a Veterans Administration Merit Award (1I01CX000139-01).

Eric Schoch | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

nachricht New potential cancer treatment using microwaves to target deep tumors
12.10.2016 | University of Texas at Arlington

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>