Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers identify biomarkers for possible blood test to predict suicide risk

20.08.2013
Indiana University School of Medicine researchers have found a series of RNA biomarkers in blood that may help identify who is at risk for committing suicide.

In a study reported Aug. 20 in the advance online edition of the Nature Publishing Group journal Molecular Psychiatry, the researchers said the biomarkers were found at significantly higher levels in the blood of both bipolar disorder patients with thoughts of suicide as well in a group of people who had committed suicide.

Principal investigator Alexander B. Niculescu III, M.D., Ph.D., associate professor of psychiatry and medical neuroscience at the IU School of Medicine and attending psychiatrist and research and development investigator at the Richard L. Roudebush Veterans Affairs Medical Center in Indianapolis, said he believes the results provide a first "proof of principle" for a test that could provide an early warning of somebody being at higher risk for an impulsive suicide act.

"Suicide is a big problem in psychiatry. It's a big problem in the civilian realm, it's a big problem in the military realm and there are no objective markers," said Dr. Niculescu, director of the Laboratory of Neurophenomics at the Institute of Psychiatric Research at the IU School of Medicine.

"There are people who will not reveal they are having suicidal thoughts when you ask them, who then commit it and there's nothing you can do about it. We need better ways to identify, intervene and prevent these tragic cases," he said.

Over a three-year period, Niculescu and his colleagues followed a large group of patients diagnosed with bipolar disorder, completing interviews and taking blood samples every three to six months. The researchers conducted a variety of analyses of the blood of a subset of participants who reported a dramatic shift from no suicidal thoughts to strong suicidal ideation. They identified differences in gene expression between the "low" and "high" states of suicidal thoughts and subjected those findings to a system of genetic and genomic analysis called Convergent Functional Genomics that identified and prioritized the best markers by cross-validation with other lines of evidence.

The researchers found that the marker SAT1 and a series of other markers provided the strongest biological "signal" associated with suicidal thoughts.

Next, to validate their findings, working with the local coroner's office, they analyzed blood samples from suicide victims and found that some of same top markers were significantly elevated.

Finally, the researchers analyzed blood test results from two additional groups of patients and found that high blood levels of the biomarkers were correlated with future suicide-related hospitalizations, as well as hospitalizations that had occurred before the blood tests.

"This suggests that these markers reflect more than just a current state of high risk, but could be trait markers that correlate with long term risk," said Dr. Niculescu.

Although confident in the biomarkers validity, Dr. Niculescu noted that a limitation is that the research subjects were all male.

"There could be gender differences," he said. "We would also like to conduct more extensive, normative studies, in the population at large."

In addition to extending the research to females to see if the same or other markers come into play, Dr. Niculescu and colleagues plan to conduct research among other groups, such as persons who have less impulsive, more deliberate and planned subtypes of suicide.

Nonetheless, Dr. Niculescu said, "These seem to be good markers for suicidal behavior in males who have bipolar mood disorders or males in the general population who commit impulsive violent suicide. In the future we want to study and assemble clinical and socio-demographic risk factors, along with our blood tests, to increase our ability to predict risk.

"Suicide is complex: in addition to psychiatric and addiction issues that make people more vulnerable, there are existential issues related to lack of satisfaction with one's life, lack of hope for the future, not feeling needed, and cultural factors that make suicide seem like an option."

He said he hopes such biomarkers, along with other tools, including neuropsychological tests and socio-demographic checklists currently in development by his group, ultimately can help identify people who are at risk, leading to pre-emptive intervention, counseling, and saved lives.

"Over a million people each year world-wide die from suicide and this is a preventable tragedy".

Additional investigators contributing to the research were Helen Le-Niculescu, Daniel F. Levey, Mikias Ayalew, Nikita Jain, Laura Palmer, Miranda Gavrin, Evan Winiger, Sughanda Bhosrekar, Robert Schweitzer, Ganesh Shankar, Mike Yard, George Sandusky and Anantha Shekhar of the IU School of Medicine; Mark Radel, Elizabeth Belanger, Hillary Duckworth, Kyle Olesek, and Jeffery Vergo of the Indianapolis Veterans Administration Medical Center; Alfarena Ballew of the Marion County (Ind.) Coroner's Office and Nicholas J. Schork, Sunil M. Kurian, Daniel R. Salomon and of The Scripps Research Institute.

The research was supported by an NIH Directors' New Innovator Award (1DP2OD007363) and a Veterans Administration Merit Award (1I01CX000139-01).

Eric Schoch | EurekAlert!
Further information:
http://www.iu.edu

More articles from Health and Medicine:

nachricht Usher syndrome: Gene therapy restores hearing and balance
25.09.2017 | Institut Pasteur

nachricht MRI contrast agent locates and distinguishes aggressive from slow-growing breast cancer
25.09.2017 | Case Western Reserve University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Nerves control the body’s bacterial community

26.09.2017 | Life Sciences

Four elements make 2-D optical platform

26.09.2017 | Physics and Astronomy

Goodbye, login. Hello, heart scan

26.09.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>