Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers identify ALS gene mutation

02.03.2009
Early study is key to latest discovery

Research that has discovered a new gene whose mutations cause 5 percent of inherited cases of ALS (amyotrophic lateral sclerosis) is part of a national study led by the Northwestern University Feinberg School of Medicine.

The study reported in Science today (Feb. 27) points to a common cellular deficiency in the fatal neurological disorder, said Teepu Siddique, M.D., Les Turner ALS Foundation/Herbert C. Wenske Foundation Professor in the Davee Department of Neurology and Clinical Neurosciences and Department of Cell and Molecular Biology and Director of the Division of Neuromuscular Medicine at the Feinberg School.

The new research is part of a national collaboration directed by Siddique, the principal investigator for the "Genetics of ALS" project funded at Feinberg by the National Institutes of Health.

Earlier research by Siddique and colleagues extended the genetic knowledge of familial (inherited) ALS by identifying the first and second ALS genes (the SOD1 gene in 1993 and the ALSIN gene in 2001), in addition to identifying loci on chromosomes 9, 15, 16, and X.

The study published today discovered aFUS/TLS gene mutations in ALS families collected through efforts of the NIH-funded multi-center project and included among others a large Italian family previously studied by Siddique and Cortelli.

ALS affects the motor neurons in the central nervous system. As motor neurons die, the brain's ability to send signals to the body's muscles is compromised. This leads to loss of voluntary muscle movement, paralysis and eventually death from respiratory failure. The cause of most cases of ALS is not known.

"The purpose of this national study is to understand what triggers the death of motor neurons in order to find new cellular models of ALS, with the ultimate goal of advancing research that leads to a treatment for this fatal disease," Siddique said. "Approximately 10 percent of ALS cases are inherited."

"The discovery of this gene mutation shows new kinds of molecular defects that damage motor neurons and it implicates defective pathways previously identified in other genetic forms of ALS," said Siddique.

Charles Loebbaka | EurekAlert!
Further information:
http://www.northwestern.edu
http://www.northwestern.edu/newscenter/

More articles from Health and Medicine:

nachricht Second cause of hidden hearing loss identified
20.02.2017 | Michigan Medicine - University of Michigan

nachricht Prospect for more effective treatment of nerve pain
20.02.2017 | Universität Zürich

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Positrons as a new tool for lithium ion battery research: Holes in the electrode

22.02.2017 | Power and Electrical Engineering

New insights into the information processing of motor neurons

22.02.2017 | Life Sciences

Healthy Hiking in Smart Socks

22.02.2017 | Innovative Products

VideoLinks
B2B-VideoLinks
More VideoLinks >>>