Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers identify agent responsible for protection against early stages of atherosclerosis

13.12.2011
Researchers from Boston University School of Medicine (BUSM) have identified for the first time the A2b adenosine receptor (A2bAR) as a possible new therapeutic target against atherosclerosis resulting from a diet high in fat and cholesterol. The findings, which appear on-line in Circulation, may have significant public health implications.

Adenosine is a metabolite produced naturally by cells at low levels, and at higher levels during exercise or stress. Adenosine binds to and activates cell surface receptors, one of which is the A2bAR. Previous studies have described the A2bAR as anti-inflammatory and protective against kidney ischemia, cardiac reperfusion injury and restenosis, typically via bone marrow cell signals.

In mouse models, BUSM researchers found atherosclerosis induced by a high-fat diet was more pronounced in the absence of the A2bAR. They also found bone marrow transplantation experiments indicated that A2bAR bone marrow cell signals alone were not sufficient to elicit this effect. "A2bAR genetic ablation led to elevated levels of liver and plasma cholesterol and triglycerides, and to fatty-liver pathology typical of steatosis, assessed by enzymatic assays and analysis of liver sections," explained senior author Katya Ravid, MD, a professor of medicine and biochemistry at BUSM.

The researchers also identified the mechanism underlying this effect in the liver, involving the control of the transcription factor SREBP-1 and its downstream targets-regulators of lipid synthesis. They found restoration of the A2bAR in the liver of A2bAR null mice reduced the lipid profile and atherosclerosis. "Most importantly, in vivo administration of a pharmacological activator of the A2bAR in control mice on a high fat diet reduced lipid profile and atherosclerosis. Thus, this study provides the first evidence that the A2bAR regulates liver hyperlipidemia and atherosclerosis, suggesting that this receptor may be an effective therapeutic target against earlier stages of atherosclerosis," Ravid added.

Funding for this study was provided by the National Heart, Lung and Blood Institute.

Gina DiGravio | EurekAlert!
Further information:
http://www.bmc.org

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>