Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers identify agent responsible for protection against early stages of atherosclerosis

13.12.2011
Researchers from Boston University School of Medicine (BUSM) have identified for the first time the A2b adenosine receptor (A2bAR) as a possible new therapeutic target against atherosclerosis resulting from a diet high in fat and cholesterol. The findings, which appear on-line in Circulation, may have significant public health implications.

Adenosine is a metabolite produced naturally by cells at low levels, and at higher levels during exercise or stress. Adenosine binds to and activates cell surface receptors, one of which is the A2bAR. Previous studies have described the A2bAR as anti-inflammatory and protective against kidney ischemia, cardiac reperfusion injury and restenosis, typically via bone marrow cell signals.

In mouse models, BUSM researchers found atherosclerosis induced by a high-fat diet was more pronounced in the absence of the A2bAR. They also found bone marrow transplantation experiments indicated that A2bAR bone marrow cell signals alone were not sufficient to elicit this effect. "A2bAR genetic ablation led to elevated levels of liver and plasma cholesterol and triglycerides, and to fatty-liver pathology typical of steatosis, assessed by enzymatic assays and analysis of liver sections," explained senior author Katya Ravid, MD, a professor of medicine and biochemistry at BUSM.

The researchers also identified the mechanism underlying this effect in the liver, involving the control of the transcription factor SREBP-1 and its downstream targets-regulators of lipid synthesis. They found restoration of the A2bAR in the liver of A2bAR null mice reduced the lipid profile and atherosclerosis. "Most importantly, in vivo administration of a pharmacological activator of the A2bAR in control mice on a high fat diet reduced lipid profile and atherosclerosis. Thus, this study provides the first evidence that the A2bAR regulates liver hyperlipidemia and atherosclerosis, suggesting that this receptor may be an effective therapeutic target against earlier stages of atherosclerosis," Ravid added.

Funding for this study was provided by the National Heart, Lung and Blood Institute.

Gina DiGravio | EurekAlert!
Further information:
http://www.bmc.org

More articles from Health and Medicine:

nachricht Investigators may unlock mystery of how staph cells dodge the body's immune system
22.09.2017 | Cedars-Sinai Medical Center

nachricht Monitoring the heart's mitochondria to predict cardiac arrest?
21.09.2017 | Boston Children's Hospital

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>