Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers identify a rescuer for vital tumor-suppressor

28.11.2013
Enzyme intervenes when cancer-fighting PTEN is bound for cell's protein-destroying machinery

A protector for PTEN, a tumor-thwarting protein often missing in cancer cells, has emerged from research led by scientists at The University of Texas MD Anderson Cancer Center published online at Nature Cell Biology this week.

"We discovered that the enzyme USP13 stabilizes the PTEN protein by reversing a process that marks various proteins for destruction by the cell's proteasome," said the paper's senior author Li Ma, Ph.D., assistant professor of Experimental Radiation Oncology.

"USP13 also suppresses tumor formation and glycolysis though PTEN," Ma said. Glycolysis is a glucose metabolism pathway that tumors rely on to thrive and grow.

After establishing the relationship in cell lines and mouse model experiments, the team found low levels of USP13 in human breast tumors correlate with lower levels of PTEN. Both proteins were more abundantly present in normal breast tissue.

PTEN regulates cell growth and division. It also inhibits signaling by the AKT molecular pathway, which is involved in cell survival, metabolism and growth and is often overactive in human cancers.

This discovery provides a new way to think about PTEN deficiency and how it might be remedied. Ma noted the likely keys to possible treatment would be identifying druggable oncogenes that suppress USP13 in cancer cells, or hitting targets usually controlled by PTEN.

"In our paper, we showed that loss of USP13 leads to loss of PTEN and activation of AKT signaling, and that treatment of a breast cancer cell line with the AKT inhibitor MK-2206 can abolish the effect of USP13 loss on promoting tumor cell proliferation," Ma said. MK-2206 is actively being tested in clinical trials against a variety of cancers at MD Anderson and elsewhere, including advanced breast cancer.

Genetic defects alone don't explain PTEN's absence

"The rationale of our work is that despite the frequent genetic alterations seen in the PTEN gene in human cancer, loss of the PTEN protein has been observed in a much higher percentage of human tumors," Ma said. "For example, approximately 5 percent of non-inherited breast tumors carry PTEN gene mutations, but loss of the PTEN protein is actually reported in nearly 40 percent of breast tumors."

This suggested, Ma said, that regulation of PTEN after gene expression or after its translation into a protein "may contribute substantially to development of human breast cancer."

Ma and colleagues focused on ubiquitylation, a process that regulates proteins by attaching molecules called ubiquitins to them. When more than one ubiquitin is attached to a protein, a chain forms that is both a target and a handle for the proteasome – a protein complex that degrades proteins and recycles bits of them for other use.

Previous studies had revealed several proteins that attach ubiquitins to PTEN to initiate its destruction. Nothing had been identified that reverses that process for PTEN.

Auditioning 30 DUBs to find one PTEN defender

The team screened 30 known deubiquitylating enzymes (DUBs). Of those, USP13 was noteworthy for its ability to stabilize PTEN by directly binding to it and removing ubiquitins.

A series of experiments showed that overexpressing USP13 in breast cancer cells:

Increased PTEN expression and decreased cell multiplication and conversion to a cancerous state.
Reduced cancer-promoting AKT signaling.
Had no effect in cancer cells that lacked the PTEN gene.
The team also confirmed that USP13 removes ubiquitins from PTEN. Silencing USP13 expression tripled the polyubiquitylation of PTEN, expressing USP13 reduced it by 65 percent.

Knocking down USP13 in breast cancer cells increased cell multiplication and growth, while restoring either PTEN or USP13 completely reversed the effect.

Lower USP13, larger tumors in mice

In mice, those implanted with a breast cancer cell line with USP13 depleted had a 2.5-fold increase in tumor volume and a 3.5-fold increase in tumor weight over 65 days compared with a control group.

Ma and colleagues also analyzed USP13 and PTEN using human breast cancer progression tissue microarrays from the National Cancer Institute.

Lower PTEN levels were found in 152 of 206 tumors (73.8 percent) and lower USP13 levels in 83 of 201 (41.3 percent).
Of the 83 tumors with low USP13, 73 (88 percent) also had low PTEN.
In normal breast tissue, only 31.8 percent had low levels of PTEN; 13.2 percent had low USP13.

"Our future studies aim to determine the physiological function of USP13 and how USP13 expression is lost in human cancer," Ma said.

Co-authors with Ma are first author Jinsong Zhang, Ph.D., Peijing Zhang, Ph.D., Hai-long Piao, Ph.D., Wenqi Wang, Ph.D., Min Wang, Dahu Chen, Ph.D. and Junjie Chen, Ph.D., of MD Anderson's Department of Experimental Radiation Oncology; Yongkun Wei, Ph.D., Yutong Sun, Ph.D., and Mien-Chie Hung, Ph.D., of MD Anderson's Department of Molecular and Cellular Oncology; and Subbareddy Maddika, Ph.D., of the Laboratory of Cell Death and Cell Survival, Centre for DNA Fingerprinting and Diagnostics, Nampally, Hyderabad, India.

Grants from the National Cancer Institute of the U.S. National Institutes of Health (R00CA138572 and R01CA166051) and a Cancer Prevention and Research Institute of Texas Scholar Award to Ma funded this research. MD Anderson receives a cancer center support grant from the NCI (P30 CA016672).

About MD Anderson

The University of Texas MD Anderson Cancer Center in Houston ranks as one of the world's most respected centers focused on cancer patient care, research, education and prevention. MD Anderson is one of only 41 comprehensive cancer centers designated by the National Cancer Institute. For 10 of the past 12 years, including 2013, MD Anderson has ranked No. 1 in cancer care in "Best Hospitals," a survey published annually in U.S. News & World Report. MD Anderson receives a cancer center support grant from the National Cancer Institute of the National Institutes of Health (P30 CA016672).

Scott Merville | EurekAlert!
Further information:
http://www.mdanderson.org

More articles from Health and Medicine:

nachricht Biofilm discovery suggests new way to prevent dangerous infections
23.05.2017 | University of Texas at Austin

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>