Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers identify a mechanism for the transformation of colon polyps

03.12.2012
Researchers from the University of Geneva demonstrate that, in this type of lesion, the rate of progression from a precancerous state to the tumor stage accelerates over time

The causes underlying the development of certain types of common cancers have not yet been elucidated. In order to better determine the origin and the sequence of events responsible for the onset of colon cancer, the teams led by Thanos Halazonetis and Stylianos Antonarakis, professors at the University of Geneva (UNIGE), Switzerland, have sequenced the DNA of biopsied tissue from colon polyps.

The results show that these precancerous lesions have a specific profile called 'mutator', which is associated with an increased frequency of acquisition of certain mutations. The study, published December 1, 2012 in the journal Cancer Research, also designates mutations in three specific genes as being the likely initiators of the progression towards malignancy.

At each cell division, the entirety of our DNA, that is some 6.4 billion base pairs, must be replicated. The enzymes engaged in this task work at a prodigious rate of about 1000 base pairs per minute. This sometimes leads to errors, which are usually corrected by other enzymes. However, the repair mechanisms do not work when there is a defect in the DNA replication process, which is the case for cancer cells.

The genome of human cancer cells is generally unstable. The different forms and causes of this characteristic, which results in a greater susceptibility to acquire mutations, are not all known. "In order to explore the genesis and better understand the sequence of events leading to tumor development, we probed the DNA of precancerous lesions," explains Thanos Halazonetis, Professor at the Departments of Molecular Biology and Biochemistry of the UNIGE's Faculty of Science. To do this, the team led by the professor sequenced the exome, which is the part of DNA that codes for proteins, from colon polyps sampled from patients. The researchers were thus able to pinpoint mutations in three specific genes, constituting the likely initial cause on the road to malignancy. "These genes, named APC, CTNNB1 and BRAF, all have a vital role in the cell. In particular, they are involved in cell division and adhesion to other cells, as well as various intracellular signaling pathways," explains Sergey Nikolaev, at the Department of Genetic Medicine and Development of the Faculty of Medecine, and first author of the article.

The researchers also compared the DNA of polyps, which most were precancerous, to that of healthy colon tissue. They discovered in the former an abnormally high frequency of mutations called SNS, characterized by the substitution of a single DNA base by another. "These precancerous lesions have a profile called 'mutator' which is associated with an increase in the frequency of acquiring SNS type mutations. During early development of the polyp, the mutation rate in these cells is normal, and then it accelerates over time," says Thanos Halazonetis.

The mutation rate observed in polyps was sometimes 200 times greater than that present in normal cells, which greatly increases their progression towards a cancerous stage. According to the professor, these polyps become cancerous in five to ten years. Thanks to these findings, recommendations for routine biopsies, usually conducted every five years, could henceforth be refined on a case to case basis.

Thanos Halazonetis | EurekAlert!
Further information:
http://www.unige.ch

More articles from Health and Medicine:

nachricht Millions through license revenues
27.04.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht New High-Performance Center Translational Medical Engineering
26.04.2017 | Fraunhofer ITEM

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>