Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers have identified a novel factor—and an unexpected mechanism—for the regulation of epithelial development

10.11.2008
Keeping development organized

Signaling factors known as Wnts play an integral role in processes relating to body pattern formation during embryonic development. The Wnts can trigger a broad range of different signaling pathways; the specification of which particular pathway gets activated is managed by additional interactions between Wnt receptors and specific cofactors.

One process controlled by the Wnts is the planar cell polarity (PCP) pathway, which is essential to proper epithelial formation, the cells that line the surface of the skin and body cavities. “Each cell in epithelium has a polarity in the plane of the epithelial sheet—this can be easily seen in the fact that hairs are aligned in one direction,” explains Hiroshi Sasaki of the RIKEN Center for Developmental Biology in Kobe. “The PCP pathway regulates such polarity of cells.”

Sasaki’s group has been searching for novel genes involved in body pattern formation, and recently identified Cthrc1, a gene that exhibits spatial and temporal expression patterns that mirror those of known components of the PCP pathway. This led them to hypothesize that Cthrc1 may also be acting within this signaling cascade.

In order to test this model, they generated strains of mice in which the expression of Cthrc1 had been eliminated1. Disruption of this gene had no apparent effect on its own, but when Sasaki’s team further modified the mouse strain to reduce expression of the PCP signaling gene Vangl2, they observed marked abnormalities in orientation and alignment of the sensory hair cells of the inner ear. Reduction of Vangl2 alone was not sufficient to cause these defects, further supporting a role for Cthrc1 in PCP.

Subsequent analysis showed that the Cthrc1 protein directly interacts with and stabilizes the complex formed by Wnts with their receptors and PCP-related co-receptors, and thereby specifically enhances PCP pathway activation while suppressing other Wnt-mediated signaling cascades. Importantly, this interaction occurs outside the cell. “Our paper reports—for the first time—an extracellular molecule involved in pathway selection by Wnt signaling molecules,” says Sasaki, “and therefore reveals a novel mechanism for pathway selection.”

Beyond these insights, however, this work also yields a new mystery—if eliminating Cthrc1 expression causes no ill effects, which protein is taking its place? “Because there are no Cthrc1-related genes in the mouse genome, structurally unrelated molecules must play similar roles in Wnt signaling,” says Sasaki. “We think that it is necessary to identify such molecules to reveal the importance of this mechanism in Wnt signaling.”

Reference

1. Yamamoto, S., Nishimura, O., Misaki, K., Nishita, M., Minami, Y., Yonemura, S., Tarui, H. & Sasaki, H. Cthrc1 selectively activates the planar cell polarity pathway of Wnt signaling by stabilizing the Wnt-receptor complex. Developmental Cell 15, 23–26 (2008).

The corresponding author for this highlight is based at the RIKEN Laboratory for Embryonic Induction

Saeko Okada | ResearchSEA
Further information:
http://www.rikenresearch.riken.jp/research/580/
http://www.researchsea.com

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>