Researchers use human cells to engineer functional anal sphincters in lab

“In essence, we have built a replacement sphincter that we hope can one day benefit human patients. This is the first bioengineered sphincter made with both muscle and nerve cells, making it 'pre-wired' for placement in the body,” said senior author Khalil N. Bitar, Ph.D., a professor of regenerative medicine at Wake Forest Baptist Medical Center's Institute for Regenerative Medicine. Bitar performed the work when he was on the University of Michigan faculty and it included a colleague from Emory University.

Sphincters are ring-like muscles that maintain constriction of a body passage. There are numerous sphincters in the human body, including those that control the release of urine and feces. There are actually two sphincters at the anus – one internal and one external. Fecal incontinence is the result of a weakened internal sphincter.

There is a high incidence of weakened internal fecal sphincters in older adults; and women who have had episiotomies during childbirth can also be affected. “Many individuals find themselves withdrawing from their social lives and attempting to hide the problem from their families, friends, and even their doctors,” said Bitar. “Many people suffer without help.”

Current options for repair of the internal anal sphincter include grafts of skeletal muscle, injectable silicone material or implantation of mechanical devices, all of which have high complication rates and limited success.

To engineer an internal anal sphincter in the laboratory, the researchers used a small biopsy from a human sphincter and isolated smooth muscle cells that were then multiplied in the lab. In a ring-shaped mold, these cells were layered with nerve cells isolated from mice to build the sphincter. The mold was placed in an incubator for nine days, allowing for tissue formation. The entire process took about six weeks.

Numerous laboratory tests of the engineered sphincters, including stimulating the nerve cells, showed normal tissue function, such as the ability to relax and contract. The sphincters were then implanted just under the skin of mice to determine how they would respond in the body. Mice with suppressed immune systems were selected so that there would be no issues with rejection.

After 25 days of implantation, each sphincter was re-tested and also compared with the animals' native sphincters. The engineered sphincters had developed a blood vessel supply and continued to function like native tissue.

“The engineered sphincters were physiologically similar to native tissue,” said Bitar. “This takes us one step closer to realizing the goal of using a patient's own cells to engineer a replacement sphincter in the lab.”

Bitar's team had previously shown that circular pieces of tissue made from sphincter muscle cells displayed characteristics of native sphincters. However, the tissue lacked the nerve cells required for normal function in the body.

“Our latest advance, a sphincter engineered with muscle and nerve cells, will allow us to 'connect' the engineered tissue with nerve pathways in the intestine,” said Bitar.

Bitar's group will continue the research in more advanced research models. The ultimate goal is to harvest both muscle and nerve cells from a patient, build a pre-wired sphincter in the lab, and implant it back in the same patient. Using the patient's own cells would eliminate the risk of rejection.

“While we have numerous challenges to meet, we have crossed a major hurdle,” said Bitar. “This proof of concept research suggests that this strategy may be useful for treating a variety of neuromuscular conditions of the intestine. In addition, it could potentially be applied to other diseases of sphincter muscles, including urinary incontinence.”

Co-researchers were Robert Gilmont, Ph.D., Sita Somara, Ph.D., and lead author Shreya A. Raghavan, a Ph.D. candidate, all now at Wake Forest Baptist; Daniel Teitelbaum M.D., from the University of Michigan; and Shanthi Srinivasan, M.D., from Emory University.

Media Contacts: Karen Richardson, krchrdsn@wakehealth.edu, (336) 716-4453 or Main Number (336) 716-4587.

Wake Forest Baptist Medical Center is a fully integrated academic medical center located in Winston-Salem, North Carolina. The institution comprises the medical education and research components of Wake Forest School of Medicine, the integrated clinical structure and consumer brand Wake Forest Baptist Health, which includes North Carolina Baptist Hospital and Brenner Children's Hospital, the commercialization of research discoveries through the Piedmont Triad Research Park, as well a network of affiliated community based hospitals, physician practices, outpatient services and other medical facilities. Wake Forest School of Medicine is ranked among the nation's best medicine schools and is a leading national research center in fields such as regenerative medicine, cancer, neuroscience, aging, addiction and public health sciences. Wake Forest Baptist's clinical programs are consistently ranked as among the best in the country by U.S.News & World Report.

Media Contact

Karen Richardson EurekAlert!

More Information:

http://www.wfubmc.edu

All latest news from the category: Health and Medicine

This subject area encompasses research and studies in the field of human medicine.

Among the wide-ranging list of topics covered here are anesthesiology, anatomy, surgery, human genetics, hygiene and environmental medicine, internal medicine, neurology, pharmacology, physiology, urology and dental medicine.

Back to home

Comments (0)

Write a comment

Newest articles

Lighting up the future

New multidisciplinary research from the University of St Andrews could lead to more efficient televisions, computer screens and lighting. Researchers at the Organic Semiconductor Centre in the School of Physics and…

Researchers crack sugarcane’s complex genetic code

Sweet success: Scientists created a highly accurate reference genome for one of the most important modern crops and found a rare example of how genes confer disease resistance in plants….

Evolution of the most powerful ocean current on Earth

The Antarctic Circumpolar Current plays an important part in global overturning circulation, the exchange of heat and CO2 between the ocean and atmosphere, and the stability of Antarctica’s ice sheets….

Partners & Sponsors