Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers use human cells to engineer functional anal sphincters in lab

10.08.2011
Researchers have built the first functional anal sphincters in the laboratory, suggesting a potential future treatment for both fecal and urinary incontinence. Made from muscle and nerve cells, the sphincters developed a blood supply and maintained function when implanted in mice. The results are reported in the medical journal Gastroenterology.

"In essence, we have built a replacement sphincter that we hope can one day benefit human patients. This is the first bioengineered sphincter made with both muscle and nerve cells, making it 'pre-wired' for placement in the body," said senior author Khalil N. Bitar, Ph.D., a professor of regenerative medicine at Wake Forest Baptist Medical Center's Institute for Regenerative Medicine. Bitar performed the work when he was on the University of Michigan faculty and it included a colleague from Emory University.

Sphincters are ring-like muscles that maintain constriction of a body passage. There are numerous sphincters in the human body, including those that control the release of urine and feces. There are actually two sphincters at the anus – one internal and one external. Fecal incontinence is the result of a weakened internal sphincter.

There is a high incidence of weakened internal fecal sphincters in older adults; and women who have had episiotomies during childbirth can also be affected. "Many individuals find themselves withdrawing from their social lives and attempting to hide the problem from their families, friends, and even their doctors," said Bitar. "Many people suffer without help."

Current options for repair of the internal anal sphincter include grafts of skeletal muscle, injectable silicone material or implantation of mechanical devices, all of which have high complication rates and limited success.

To engineer an internal anal sphincter in the laboratory, the researchers used a small biopsy from a human sphincter and isolated smooth muscle cells that were then multiplied in the lab. In a ring-shaped mold, these cells were layered with nerve cells isolated from mice to build the sphincter. The mold was placed in an incubator for nine days, allowing for tissue formation. The entire process took about six weeks.

Numerous laboratory tests of the engineered sphincters, including stimulating the nerve cells, showed normal tissue function, such as the ability to relax and contract. The sphincters were then implanted just under the skin of mice to determine how they would respond in the body. Mice with suppressed immune systems were selected so that there would be no issues with rejection.

After 25 days of implantation, each sphincter was re-tested and also compared with the animals' native sphincters. The engineered sphincters had developed a blood vessel supply and continued to function like native tissue.

"The engineered sphincters were physiologically similar to native tissue," said Bitar. "This takes us one step closer to realizing the goal of using a patient's own cells to engineer a replacement sphincter in the lab."

Bitar's team had previously shown that circular pieces of tissue made from sphincter muscle cells displayed characteristics of native sphincters. However, the tissue lacked the nerve cells required for normal function in the body.

"Our latest advance, a sphincter engineered with muscle and nerve cells, will allow us to 'connect' the engineered tissue with nerve pathways in the intestine," said Bitar.

Bitar's group will continue the research in more advanced research models. The ultimate goal is to harvest both muscle and nerve cells from a patient, build a pre-wired sphincter in the lab, and implant it back in the same patient. Using the patient's own cells would eliminate the risk of rejection.

"While we have numerous challenges to meet, we have crossed a major hurdle," said Bitar. "This proof of concept research suggests that this strategy may be useful for treating a variety of neuromuscular conditions of the intestine. In addition, it could potentially be applied to other diseases of sphincter muscles, including urinary incontinence."

Co-researchers were Robert Gilmont, Ph.D., Sita Somara, Ph.D., and lead author Shreya A. Raghavan, a Ph.D. candidate, all now at Wake Forest Baptist; Daniel Teitelbaum M.D., from the University of Michigan; and Shanthi Srinivasan, M.D., from Emory University.

Media Contacts: Karen Richardson, krchrdsn@wakehealth.edu, (336) 716-4453 or Main Number (336) 716-4587.

Wake Forest Baptist Medical Center is a fully integrated academic medical center located in Winston-Salem, North Carolina. The institution comprises the medical education and research components of Wake Forest School of Medicine, the integrated clinical structure and consumer brand Wake Forest Baptist Health, which includes North Carolina Baptist Hospital and Brenner Children's Hospital, the commercialization of research discoveries through the Piedmont Triad Research Park, as well a network of affiliated community based hospitals, physician practices, outpatient services and other medical facilities. Wake Forest School of Medicine is ranked among the nation's best medicine schools and is a leading national research center in fields such as regenerative medicine, cancer, neuroscience, aging, addiction and public health sciences. Wake Forest Baptist's clinical programs are consistently ranked as among the best in the country by U.S.News & World Report.

Karen Richardson | EurekAlert!
Further information:
http://www.wfubmc.edu

More articles from Health and Medicine:

nachricht Penn vet research identifies new target for taming Ebola
12.01.2017 | University of Pennsylvania

nachricht The strange double life of Dab2
10.01.2017 | University of Miami Miller School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>