Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers gain ground in efforts to fight parasite infection

27.05.2009
New findings by researchers UT Southwestern Medical Center are accelerating efforts to eradicate worm infections that afflict a third of the world’s population.
The new findings, available online and in an upcoming issue of the Proceedings of the National Academy of Sciences, demonstrate that a biochemical system that controls development and reproduction of Caenorhabditis elegans, a common research worm, also provides the same function in several parasitic nematodes, including hookworm.

In these parasitic organisms, the activating molecule, called dafachronic acid, sends the necessary signals for the worms to mature from the stage in which they infect a host to the stage in which they start feeding on the host, which is what makes the host sick. In 2006 UT Southwestern scientists led by Dr. David Mangelsdorf, chairman of pharmacology at UT Southwestern and senior author of the new study in PNAS, had made the discovery in C elegans, a nematode about the size of a pinhead.

In the new study, the UT Southwestern researchers treated hookworm parasites pharmacologically at the infective larval stage with dafachronic acid, causing them to pass into the “feeding” larval stage outside a host, where they had no food supply and died. Treatment of other infectious species had similar effects.

“We essentially coaxed them to mature before a food source — the host — is available,” Dr. Mangelsdorf said.

Many infectious nematode larvae live in the soil, often in areas where proper sanitation is lacking. According to the World Health Organization, parasitic nematodes infect about 2 billion people worldwide and severely sicken some 300 million, at least 50 percent of whom are school-age children.

The results point to a promising therapeutic target for the infectious nematodes, said Dr. Mangelsdorf, an investigator with the Howard Hughes Medical Institute at

UT Southwestern.

“What keeps these parasites infectious is the lack of production of dafachronic acid,” he said. “Once they get inside the host, however, something switches them on to begin making this compound. We can interrupt the worm’s life cycle just by giving it this compound when it’s in the infectious state, before it enters a host.”

The nature of that switch is still under investigation. It may be that the parasite itself somehow senses it is inside the host and begins making the compound, or the parasite could receive a signal from the host to begin production, Dr. Mangelsdorf said. There also is the possibility that the parasite receives the dafachronic acid, or its precursor building blocks, from the host, he said.

Whatever the source of dafachronic acid, the researchers are confident that the compound is worth pursuing as a possible therapeutic target. In the study, the researchers present additional details about the nature of different forms of dafachronic acid and how they function in specific nematodes.

Dr. Mangelsdorf said the next step in the research is to screen large libraries of chemicals to search for compounds that behave like dafachronic acid and that could possibly be developed into pesticides that could be spread in high-infection areas.

The research study is Dr. Mangelsdorf’s inaugural publication in PNAS as a member of the National Academy of Sciences. He was elected to the organization in 2008.

Other UT Southwestern researchers involved in the study were lead author and pharmacology graduate student Zhu Wang; former graduate student Daniel Motola; Dr. Kamalesh Sharma, research scientist in internal medicine; Dr. Richard Auchus, professor of internal medicine; and Dr. Steven Kliewer, professor of molecular biology and pharmacology. Researchers from the Van Andel Research Institute, Argonne National Laboratory, George Washington University Medical Center and the University of Pennsylvania also participated.

The research was funded by the Howard Hughes Medical Institute, the National Institutes of Health, the Welch Foundation, and the Jay and Betty Van Andel Foundation.

Amanda Siegfried | EurekAlert!
Further information:
http://www.utsouthwestern.edu

More articles from Health and Medicine:

nachricht 3D images of cancer cells in the body: Medical physicists from Halle present new method
16.05.2018 | Martin-Luther-Universität Halle-Wittenberg

nachricht Better equipped in the fight against lung cancer
16.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Designer cells: artificial enzyme can activate a gene switch

22.05.2018 | Life Sciences

PR of MCC: Carbon removal from atmosphere unavoidable for 1.5 degree target

22.05.2018 | Earth Sciences

Achema 2018: New camera system monitors distillation and helps save energy

22.05.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>