Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers gain ground in efforts to fight parasite infection

27.05.2009
New findings by researchers UT Southwestern Medical Center are accelerating efforts to eradicate worm infections that afflict a third of the world’s population.
The new findings, available online and in an upcoming issue of the Proceedings of the National Academy of Sciences, demonstrate that a biochemical system that controls development and reproduction of Caenorhabditis elegans, a common research worm, also provides the same function in several parasitic nematodes, including hookworm.

In these parasitic organisms, the activating molecule, called dafachronic acid, sends the necessary signals for the worms to mature from the stage in which they infect a host to the stage in which they start feeding on the host, which is what makes the host sick. In 2006 UT Southwestern scientists led by Dr. David Mangelsdorf, chairman of pharmacology at UT Southwestern and senior author of the new study in PNAS, had made the discovery in C elegans, a nematode about the size of a pinhead.

In the new study, the UT Southwestern researchers treated hookworm parasites pharmacologically at the infective larval stage with dafachronic acid, causing them to pass into the “feeding” larval stage outside a host, where they had no food supply and died. Treatment of other infectious species had similar effects.

“We essentially coaxed them to mature before a food source — the host — is available,” Dr. Mangelsdorf said.

Many infectious nematode larvae live in the soil, often in areas where proper sanitation is lacking. According to the World Health Organization, parasitic nematodes infect about 2 billion people worldwide and severely sicken some 300 million, at least 50 percent of whom are school-age children.

The results point to a promising therapeutic target for the infectious nematodes, said Dr. Mangelsdorf, an investigator with the Howard Hughes Medical Institute at

UT Southwestern.

“What keeps these parasites infectious is the lack of production of dafachronic acid,” he said. “Once they get inside the host, however, something switches them on to begin making this compound. We can interrupt the worm’s life cycle just by giving it this compound when it’s in the infectious state, before it enters a host.”

The nature of that switch is still under investigation. It may be that the parasite itself somehow senses it is inside the host and begins making the compound, or the parasite could receive a signal from the host to begin production, Dr. Mangelsdorf said. There also is the possibility that the parasite receives the dafachronic acid, or its precursor building blocks, from the host, he said.

Whatever the source of dafachronic acid, the researchers are confident that the compound is worth pursuing as a possible therapeutic target. In the study, the researchers present additional details about the nature of different forms of dafachronic acid and how they function in specific nematodes.

Dr. Mangelsdorf said the next step in the research is to screen large libraries of chemicals to search for compounds that behave like dafachronic acid and that could possibly be developed into pesticides that could be spread in high-infection areas.

The research study is Dr. Mangelsdorf’s inaugural publication in PNAS as a member of the National Academy of Sciences. He was elected to the organization in 2008.

Other UT Southwestern researchers involved in the study were lead author and pharmacology graduate student Zhu Wang; former graduate student Daniel Motola; Dr. Kamalesh Sharma, research scientist in internal medicine; Dr. Richard Auchus, professor of internal medicine; and Dr. Steven Kliewer, professor of molecular biology and pharmacology. Researchers from the Van Andel Research Institute, Argonne National Laboratory, George Washington University Medical Center and the University of Pennsylvania also participated.

The research was funded by the Howard Hughes Medical Institute, the National Institutes of Health, the Welch Foundation, and the Jay and Betty Van Andel Foundation.

Amanda Siegfried | EurekAlert!
Further information:
http://www.utsouthwestern.edu

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>