Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Researchers gain ground in efforts to fight parasite infection

New findings by researchers UT Southwestern Medical Center are accelerating efforts to eradicate worm infections that afflict a third of the world’s population.
The new findings, available online and in an upcoming issue of the Proceedings of the National Academy of Sciences, demonstrate that a biochemical system that controls development and reproduction of Caenorhabditis elegans, a common research worm, also provides the same function in several parasitic nematodes, including hookworm.

In these parasitic organisms, the activating molecule, called dafachronic acid, sends the necessary signals for the worms to mature from the stage in which they infect a host to the stage in which they start feeding on the host, which is what makes the host sick. In 2006 UT Southwestern scientists led by Dr. David Mangelsdorf, chairman of pharmacology at UT Southwestern and senior author of the new study in PNAS, had made the discovery in C elegans, a nematode about the size of a pinhead.

In the new study, the UT Southwestern researchers treated hookworm parasites pharmacologically at the infective larval stage with dafachronic acid, causing them to pass into the “feeding” larval stage outside a host, where they had no food supply and died. Treatment of other infectious species had similar effects.

“We essentially coaxed them to mature before a food source — the host — is available,” Dr. Mangelsdorf said.

Many infectious nematode larvae live in the soil, often in areas where proper sanitation is lacking. According to the World Health Organization, parasitic nematodes infect about 2 billion people worldwide and severely sicken some 300 million, at least 50 percent of whom are school-age children.

The results point to a promising therapeutic target for the infectious nematodes, said Dr. Mangelsdorf, an investigator with the Howard Hughes Medical Institute at

UT Southwestern.

“What keeps these parasites infectious is the lack of production of dafachronic acid,” he said. “Once they get inside the host, however, something switches them on to begin making this compound. We can interrupt the worm’s life cycle just by giving it this compound when it’s in the infectious state, before it enters a host.”

The nature of that switch is still under investigation. It may be that the parasite itself somehow senses it is inside the host and begins making the compound, or the parasite could receive a signal from the host to begin production, Dr. Mangelsdorf said. There also is the possibility that the parasite receives the dafachronic acid, or its precursor building blocks, from the host, he said.

Whatever the source of dafachronic acid, the researchers are confident that the compound is worth pursuing as a possible therapeutic target. In the study, the researchers present additional details about the nature of different forms of dafachronic acid and how they function in specific nematodes.

Dr. Mangelsdorf said the next step in the research is to screen large libraries of chemicals to search for compounds that behave like dafachronic acid and that could possibly be developed into pesticides that could be spread in high-infection areas.

The research study is Dr. Mangelsdorf’s inaugural publication in PNAS as a member of the National Academy of Sciences. He was elected to the organization in 2008.

Other UT Southwestern researchers involved in the study were lead author and pharmacology graduate student Zhu Wang; former graduate student Daniel Motola; Dr. Kamalesh Sharma, research scientist in internal medicine; Dr. Richard Auchus, professor of internal medicine; and Dr. Steven Kliewer, professor of molecular biology and pharmacology. Researchers from the Van Andel Research Institute, Argonne National Laboratory, George Washington University Medical Center and the University of Pennsylvania also participated.

The research was funded by the Howard Hughes Medical Institute, the National Institutes of Health, the Welch Foundation, and the Jay and Betty Van Andel Foundation.

Amanda Siegfried | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Advanced analysis of brain structure shape may track progression to Alzheimer's disease
26.10.2016 | Massachusetts General Hospital

nachricht Indian roadside refuse fires produce toxic rainbow
26.10.2016 | Duke University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>