Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers find possible new treatment strategies for pancreatic cancer

04.03.2011
New University of Georgia research has identified a protein that can be modified to improve the effectiveness of one of the most common drugs used to treat pancreatic cancer.

The research, published in the March edition of the journal Cancer Research, found that a cell-surface protein called CNT1, which transports cancer-killing drugs into tumor cells, was reduced in function in two thirds of pancreatic tumors.

By improving the function of CNT1, the researchers increased the effectiveness of the cancer-killing drugs in pancreatic tumor cells derived from human patients, said lead-author Raj Govindarajan, assistant professor of pharmaceutical and biomedical sciences in the UGA College of Pharmacy.

"The transporter was failing to take up the drug, so there were a bunch of different drug-resistant tumor cells," said Govindarajan. "Therapies that restore CNT1 could increase the effectiveness of the drug by helping carry the drug into the cell."

The drug most commonly used to treat pancreatic cancer is called gemcitabine and works by entering into the DNA of cancer cells and stopping replication. Many pancreatic tumor cells are resistant to gemcitabine, which makes the disease very difficult to treat, explained Govindarajan.

The researchers identified different methods to enhance CNT1 function and slow growth of the tumor cells. They found that by using additional drugs that inhibit pathways that degrade CNT1, they could partially restore its normal function and transport more gemcitabine into the tumor cells to prevent proliferation of the tumor.

The researchers attained the same results by genetically augmenting CNT1. "We over-expressed this protein in tumor cells so that it is functional continuously throughout the cell cycle, and it took up a lot of the drug and facilitated tumor killing," said Govindarajan. "So it shows potential for therapeutic aspects."

Govindarajan and his colleagues also found that CNT1 was likely regulated by tiny RNA molecules called micro-RNAs. "Micro-RNAs are clearly emerging as a new paradigm in gene regulation," said Govindarajan. "We could potentially use micro-RNAs to increase CNT1 expression and increase tumor-cell targeting of gemcitabine."

The American Cancer Society estimates that 43,000 people will be diagnosed with pancreatic cancer every year, and about 85 percent of those will die within one year of diagnosis.

Govindarajan said that the findings need to be evaluated in laboratory animals for both effectiveness and toxicity aspects to determine if they are feasible therapeutic options. He hopes that future studies will confirm the possibilities of combining additional therapies with gemcitabine to more effectively treat pancreatic cancer. "What we are trying to do is see if we can improve the standard of care for treating pancreatic cancer," he said.

The study was funded by the National Cancer Institute and by the department of pharmaceutical and biomedical sciences at the University of Georgia.

For more information on the UGA College of Pharmacy, see http://www.rx.uga.edu/.

Raj Govindarajan | EurekAlert!
Further information:
http://www.uga.edu

Further reports about: CNT1 RNA molecule pancreatic cancer pancreatic tumor tumor cells

More articles from Health and Medicine:

nachricht Researchers identify new way to unmask melanoma cells to the immune system
17.01.2018 | Duke University Medical Center

nachricht Study advances gene therapy for glaucoma
17.01.2018 | University of Wisconsin-Madison

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Gran Chaco: Biodiversity at High Risk

17.01.2018 | Ecology, The Environment and Conservation

Only an atom thick: Physicists succeed in measuring mechanical properties of 2D monolayer materials

17.01.2018 | Physics and Astronomy

Fraunhofer HHI receives AIS Technology Innovation Award 2018 for 3D Human Body Reconstruction

17.01.2018 | Awards Funding

VideoLinks
B2B-VideoLinks
More VideoLinks >>>