Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Find Reduced Levels of an Important Neurotransmitter in MS

15.02.2011
Researchers at the University of Illinois at Chicago have shown for the first time that damage to a particular area of the brain and a consequent reduction in noradrenaline are associated with multiple sclerosis.

The study is available online in the journal Brain.

The pathological processes in MS are not well understood, but an important contributor to its progression is the infiltration of white blood cells involved in immune defense through the blood-brain barrier.

Douglas Feinstein, research professor in anesthesiology at the UIC College of Medicine, and his colleagues previously showed that the neurotransmitter noradrenaline plays an important role as an immunosuppressant in the brain, preventing inflammation and stress to neurons. Noradrenaline is also known to help to preserve the integrity of the blood-brain barrier.

Because the major source of noradrenaline is neurons in an area of the brain called the locus coeruleus, the UIC researchers hypothesized that damage to the LC was responsible for lowered levels of noradrenaline in the brains of MS patients.

"There’s a lot of evidence of damage to the LC in Alzheimer’s and Parkinson’s disease, but this is the first time that it has been demonstrated that there is stress involved to the neurons in the LC of MS patients, and that there is a reduction in brain noradrenaline levels," said Paul Polak, research specialist in the health sciences in anesthesiology and first author on the paper.

For the last 15 years, Feinstein and his colleagues have been studying the importance of noradrenaline to inflammatory processes in the brain.

"We have all the models for studying this problem, so in some ways it was a small step to look at this question in MS," said Polak.

The researchers found that LC damage and reduced levels of noradrenaline occur in a mouse model of MS and that similar changes could be found in the brains of MS patients.

The findings suggest that LC damage, accompanied by reduction in noradrenaline levels in the brain, may be a common feature of neurologic diseases, Polak said.

"There are a number of FDA-approved drugs that have been shown to raise levels of noradrenaline in the brain, and we believe that this type of therapeutic intervention could benefit patients with MS and other neurodegenerative diseases, and should be investigated," he said.

Sergey Kalinin, post-doctoral research associate in anesthesiology, also contributed to the study. This study was supported by grants from the Department of Veteran Affairs and Partners for Cures.

For more information about UIC, visit www.uic.edu

Jeanne Galatzer-Levy | Newswise Science News
Further information:
http://www.uic.edu

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>