Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers find process of cervical ripening differs between term and preterm birth

21.06.2011
Cervical ripening that instigates preterm labor is distinct from what happens at the onset of normal term labor, researchers at UT Southwestern Medical Center have found.

The findings challenge the conventional premise that premature cervical ripening and remodeling is likely just an accelerated version of the term labor process, and that normal term ripening is caused primarily by activation of inflammatory responses.

Cervical remodeling is the process by which the cervix is transformed to open sufficiently during the birth process.

"Premature cervical remodeling can occur by more than one mechanism and is not necessarily an acceleration of the physiologic process in term labor. Depending on the cause of preterm birth, that mechanism can vary," said Dr. Mala Mahendroo, associate professor of obstetrics and gynecology and the Cecil H. and Ida Green Center for Reproductive Biology Sciences at UT Southwestern, and senior author of the study published in a recent issue of Endocrinology.

The study has been selected by the Faculty of 1000 – an international group of more than 10,000 leading scientists and researchers – to be in its top 2 percent of published articles in biology and medicine.

Previous studies suggest that in term or preterm labor, white blood cells influx into the cervix and release enzymes that break down tissue support and remodel the cervix, allowing a baby to pass through the birth canal. That's only half-right, researchers in this investigation report.

"The immune system or inflammatory response is sufficient to cause cervical ripening, but it's not absolutely necessary for it to happen," said Dr. Brenda Timmons, research scientist in obstetrics and gynecology and co-lead author of the study.

Nearly 13 percent of all births in the U.S. are preterm. Premature infants can suffer respiratory distress, intraventricular hemorrhage and even cerebral palsy. Identified risk factors for preterm birth include smoking, alcohol consumption, advanced maternal age, genetics, cervical insufficiency, previous preterm birth and infection.

"In about half of all preterm births, the cause is unknown. It's critical to determine the multiple causes of preterm birth so that effective therapies can be developed for each kind," said Dr. Roxane Holt, a maternal-fetal medicine fellow and co-lead author of the study.

"When patients present in preterm labor, we don't have a lot of therapy to stop the labor," she said.

UT Southwestern researchers compared preterm birth models in mice. They injected lipopolysaccharide (LPS) to promote infection-like conditions and an inflammatory response in one model. In the other, they administered mifepristone (RU486) to simulate the withdrawal of the gestation-supporting hormone progesterone, which normally takes place at the end of a pregnancy.

Researchers report that cervical changes in inflammation-induced conditions are caused by an influx of white blood cells and an increased expression of pro-inflammatory markers with no increase in the expression of genes induced in term ripening. Preterm ripening induced by progesterone withdrawal results from the combined activation of processes that occur during term ripening and shortly postpartum.

"These findings, if translatable in women, suggest one therapy may not be effective for all preterm births, and that early identification of the cause of prematurity is necessary to determine the correct therapy," Dr. Mahendroo said.

Also participating in the study from the Department of Obstetrics and Gynecology were Dr. Yucel Akgul, a postdoctoral fellow, and Meredith Akins, a graduate student.

The research was supported by grants from the National Institutes of Health.

Visit http://www.utsouthwestern.org/obgyn to learn more about clinical services in gynecology and obstetrics at UT Southwestern.

This news release is available on our World Wide Web home page at www.utsouthwestern.edu/home/news/index.html

To automatically receive news releases from UT Southwestern via email, subscribe at www.utsouthwestern.edu/receivenews

Robin Russell | EurekAlert!
Further information:
http://www.utsouthwestern.edu

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>