Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Find Potential Novel Treatment for Influenza

02.05.2013
Scientists Pursue New Therapies as Deadly H7N9 Flu Spreads in China

An experimental drug has shown promise in treating influenza, preventing lung injury and death from the virus in preclinical studies, according to University of Maryland School of Medicine researchers publishing in the journal Nature on May 1. The scientists found that a drug called Eritoran can protect mice from death after they have been infected with a lethal dose of influenza virus.

The potential value of this drug as single therapy or in combination with antivirals is further supported by previous research that found that it is safe for use in humans. The findings are of particular interest to scientists now that the latest deadly strain of flu, H7N9, is spreading in China – 82 people in China had been infected with the new strain of flu virus as of April 26, and 17 had died.

Previous scientific studies have revealed that acute lung injury caused by the influenza virus is the result of an immune reaction mediated by a protein called Toll-like receptor 4 (TLR4). Senior author Stefanie Vogel, Ph.D., Professor of Microbiology and Immunology and Medicine at the University of Maryland, and colleagues previously demonstrated that mice that lack the ability to signal through TLR4 are highly refractory to influenza-induced lethality. In their new study, they extend these findings by showing that Eritoran — a synthetic inhibitor of TLR4, originally developed by Eisai Inc. for treatment of sepsis — improved clinical symptoms and prevented death when administered up to six days after infection with the influenza virus. Existing antiviral medications must be administered within two days of infection to be optimally effective.

Annual influenza epidemics are estimated to result in 3 million to 5 million cases of severe illness and 250,000 to 500,000 deaths yearly worldwide. The virus is continually evolving and new variants give rise to seasonal outbreaks. Increasing resistance to existing antiviral therapies and the short time-frame in which these agents are effective highlight the critical need for new treatments, such as Eritoran. This study was funded by the National Institute of Allergy and Infectious Diseases (NIAID), part of the National Institutes of Health.

“Currently, vaccines and antiviral medications are the two main approaches to preventing influenza,” says Dr. Vogel. “Problems associated vaccine development may limit efficacy and/or vaccine availability. In addition, people suffering from influenza may not go to the doctor or to the emergency room in time for the antivirals to be effective. Also, as the flu adapts to resist existing treatments, we are in search of new therapies to save lives and prevent severe illness. Our research seems to show that Eritoran could provide doctors with a new tool in their flu-fighting toolbox, as well as several more days to treat the sickest of patients successfully. More basic research is needed, but we are hopeful that this medication could one day change the way that we treat severe influenza and possibly other pathogens that cause disease by a similar mechanism.”

Karen Robinson | EurekAlert!
Further information:
http://www.umaryland.edu

More articles from Health and Medicine:

nachricht Investigators may unlock mystery of how staph cells dodge the body's immune system
22.09.2017 | Cedars-Sinai Medical Center

nachricht Monitoring the heart's mitochondria to predict cardiac arrest?
21.09.2017 | Boston Children's Hospital

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>