Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers find another piece in Alzheimer’s puzzle

12.11.2013
The protein spastin cuts off supply lines inside nerve cells

A team of German and American researchers has added another piece to the puzzle of what causes Alzheimer disease. They have found that a protein called “spastin” plays a previously unsuspected role: spastin is able to cut off the supply lines inside nerve cells, causing their death.

Therefore, substances which specifically inhibit this protein could have a positive effect on the progress of the disease.

Scientists at the Bonn site of the German Center for Neurodegenerative Diseases (DZNE), the caesar research center and the Hamburg Outstation of the Max Planck Institute for Neurological Research took the lead in these investigations. The study was published in the EMBO Journal.

Alzheimer disease causes the memory to fade, ending with complete disorientation and dementia. It also triggers the death of vast quantities of nerve cells in the brain. At present, the causes of Alzheimer’s are only partly understood. The disease is said to be “multifactorial”. Researchers in Bonn, Hamburg and the US have now identified another protagonist called “spastin”. This protein is not new to the field of neurodegenerative diseases. Pathological changes to this protein are considered to be the main cause of hereditary spastic paraplegia. “Mutated spastin damages the cells in the spinal medulla, causing paralysis of the legs. We have now found that spastin, in this case its healthy form, can damage brain cells if not controlled properly. This was a surprise, because Alzheimer research has paid only scant attention to spastin so far,” says neuroscientist Eva-Maria Mandelkow. She is a researcher on Alzheimer disease and cooperates closely with her husband Eckhard Mandelkow. The couple runs labs both in Bonn and Hamburg.

During experiments with cell cultures, the Mandelkow team – including first author Hans Zempel, who is a PhD student at the DZNE in Bonn – found that spastin can damage the supply lines inside the dendrites. Dendrites are fine ramifications of the cell body by which the nerve cell receives stimuli from other cells. But cellular contacts wither if substances important for the cell’s metabolism are not transported properly. If the supply lines – known as microtubules – are severed, the dendrites and ultimately also the nerve cells will perish. The researchers also observed this reaction in their laboratory experiments.

A fatal chain reaction

It is known that the number of microtubules in the nerve cells diminish in cases of Alzheimer disease. This affects not only the delicate dendrites but also the axon, a long cell extension by which the nerve cell transmits signals. “The factors which cause the decline of the microtubules do not necessarily appear to be the same for dendrites and axons,” remarks Eva-Maria Mandelkow. “Our investigations are now creating a clearer picture of why the microtubules in the dendrites disappear. We have been able to prove that the effect of spastin is part of a chain reaction which involves the proteins A-Beta and Tau, among others.”

A-Beta and Tau have long been held responsible for brain pathology in Alzheimer disease. These proteins are normally isolated, but in cases of Alzheimer they become sticky and form protein clumps that appear as the typical “plaques” and “tangles” in Alzheimer brains.

The scientists treated nerve cells with aggregates of the protein A-Beta, thus triggering a sequence of events. Most specifically, the cells now lost control over the proper distribution of Tau proteins, which accumulated in the dendrites. This brought about a chemical change in the microtubules there. “The microtubules became more susceptible to spastin. The protein has the effect of molecular scissors which cut the microtubules into pieces,” says the neuroscientist.

In the healthy organism, this function is strictly regulated. In itself, it is nothing special, because microtubules are constantly broken down and replaced by new ones. However, in Alzheimer disease, this breakdown process gets out of control. “The natural effect of spastin is enhanced. As a result, the microtubules are chopped to pieces,” says Eva-Maria Mandelkow.

Therapeutic potential

In a commentary in the EMBO Journal, US researchers Daphney Jean and Peter Baas, who were not involved in the current study, speculate that some of the experimental substances against Alzheimer could reinforce the negative effect of spastin. They note that at present, substances are being tested which improve the cohesion of the microtubules, but this may not hinder the scissor effect of spastin. Rather the opposite. This is due to the structure of the elongated microtubules, which are naturally made up of stable and comparatively unstable segments. Stabilizing substances cause the unstable segments to shrink while the stable segments grow. Such microtubules provide a greater contact area for spastin. This is because the protein prefers to cut through the stable segments of the microtubules.

A suitable therapeutic approach could be to specifically inhibit the effect of spastin. “Our results indicate that substances which block spastin may have a positive effect on the progress of Alzheimer. However, we have to be careful with prognoses,” says Eva-Maria Mandelkow. “Alzheimer is a disease with many facets and picking just one is unlikely to be enough. However, the important point is that we have identified a puzzle piece which will help us understand the disease better.”

Original publication
“Amyloid-ß oligomers induce synaptic damage via Tau-dependent microtubule severing by TTLL6 and spastin”, Hans Zempel, Julia Luedtke, Yatender Kumar, Jacek Biernat, Hana Dawson, Eckhard Mandelkow, Eva-Maria Mandelkow, The EMBO Journal, online publication dated September 24, 2013, http://dx.doi.org/10.1038/emboj.2013.207
Commentary (“Have you seen?”)
“It cuts two ways: microtubule loss during Alzheimer disease”, Daphney C. Jean, Peter W. Baas, The EMBO Journal, online publication dated September 27, 2013, http://dx.doi.org/doi:10.1038/emboj.2013.219

Dr. Marcus Neitzert | idw
Further information:
http://www.dzne.de

More articles from Health and Medicine:

nachricht Correct connections are crucial
26.06.2017 | Charité - Universitätsmedizin Berlin

nachricht One gene closer to regenerative therapy for muscular disorders
01.06.2017 | Cincinnati Children's Hospital Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>