Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers find melanoma not caused by early UVA light exposure

05.05.2010
Fish model experiment reverses earlier finding, reinforces UVB as culprit

Early life exposure to ultraviolet A light does not cause melanoma in a fish model that previously made that connection, scientists from The University of Texas MD Anderson Cancer Center reported today in the online Early Edition of the Proceedings of the National Academy of Sciences.

UVA exposure is unlikely to have contributed to the rise in the incidence of melanoma over the past 30 years, the researchers conclude, because the fish model had been the only animal model to indicate a connection between exposure to UVA at a young age and later development of melanoma.

"Our data refute the only direct evidence that UVA causes melanoma, which is not to say that UVA is harmless," said the study's lead author David Mitchell, Ph.D., professor in M. D. Anderson's Department of Carcinogenesis located at its Science Park – Research Division in Smithville, Texas. "UVA is just not as dangerous as we thought because it doesn't cause melanoma."

UVA is a carcinogen responsible for squamous cell carcinomas that also causes premature aging of the skin and suppresses the immune system. It's also possible, the authors note, that long-term chronic exposure to UVA can hasten the progression to malignancy of melanocytes in the skin that are already on the path to becoming melanoma.

Mitchell and colleagues tested the effects of UVA and ultraviolet B (UVB) light exposure in melanoma-prone fish hybrids that develop the disease spontaneously 15-20 percent of the time without exposure to UV light.

The scientists exposed a hybrid form of the genus Xiphophorus, more commonly known as platyfishes and swordtails, to either UVA or UVB daily between their fifth and 10th day of life. The fish were then scored for melanoma 14 months after exposure.

"We found that UVB exposure induced melanoma in 43 percent of the 194 treated fish, a much higher rate than the 18.5 percent incidence in the control group that received no UV exposure," Mitchell said. This was expected because UVB exposure at an early age is a well-established cause of melanoma.

Only 12.4 percent of 282 fish exposed to UVA developed the disease, which is not statistically different from the control group.

An influential 1993 study using the same hybrid fish connected UVA exposure to melanoma. Until that study, Mitchell said, sunscreens protected only against UVB exposure, which was of immediate public health concern because UVA makes up 90 percent of the ultraviolet light spectrum of sunlight.

"The thought was that people who used sunscreen stayed out in the sun longer, absorbing a higher dose of UVA, causing a higher risk for melanoma" Mitchell said. Most sunscreens now protect against UVA. However, the increase in the incidence of melanoma has been thought to be partly attributable to childhood exposure to UVA back when sunscreens blocked only UVB. That's unlikely, given the new results, Mitchell said.

The 1993 experiment could not be replicated in mammalian models of melanoma, Mitchell said, and a statistical retrospective of the 1993 paper indicated problems with sample sizes that were too small to yield a definitive answer on UVA exposure.

So, Mitchell and colleagues conducted the experiment again, with much larger sample sizes that provided the statistical power to reach stronger conclusions.

They also stratified the melanomas found in each group by severity, with the control and UVB-exposed fish having a higher incidence of severe, stage IV disease, while those exposed to UVA had significantly more early stage melanomas.

UVB exposure damages DNA directly, while UVA is thought to inflict its damage indirectly by inducing melanin free radicals that react with DNA to form oxidative damage that leads to melanoma. Previous studies had shown a correlation between melanin radical formation and melanoma in the UVA range of the solar spectrum. Since Mitchell and colleagues found no connection between UVA and melanoma, they note that the role of melanin free radicals in this disease is brought into question.

This research was funded by grants from the National Cancer Institute and the National Institute of Environmental Health Sciences.

Co-authors with Mitchell are André Fernandez, Ph.D., Rodney Nairn, Ph.D., Rachel Garcia, Lakshmi Paniker, David Trono and Irma Gimenez-Conti, Ph.D., D.D.S., all of the Department of Carcinogenesis; and Howard Thames, Ph.D., of MD Anderson's Department of Biostatistics. Mitchell, Thames, Conti and Nairn are also on the faculty of the University of Texas Graduate School of Biomedical Sciences, a joint program of MD Anderson and The University of Texas Health Science Center at Houston.

About M. D. Anderson

The University of Texas M. D. Anderson Cancer Center in Houston ranks as one of the world's most respected centers focused on cancer patient care, research, education and prevention. M. D. Anderson is one of only 40 comprehensive cancer centers designated by the National Cancer Institute. For six of the past eight years, including 2009, M. D. Anderson has ranked No. 1 in cancer care in "America's Best Hospitals," a survey published annually in U.S. News & World Report.

Scott Merville | EurekAlert!
Further information:
http://www.mdanderson.org

More articles from Health and Medicine:

nachricht How cancer metastasis happens: Researchers reveal a key mechanism
19.01.2018 | Weill Cornell Medicine

nachricht Researchers identify new way to unmask melanoma cells to the immune system
17.01.2018 | Duke University Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>