Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Researchers find fever-reducing medications may aid spread of influenza

Contrary to popular belief, fever-reducing medication may inadvertently cause more harm than good.

New research from McMaster University has discovered that the widespread use of medications that contain fever-reducing drugs may lead to tens of thousands more influenza cases, and more than a thousand deaths attributable to influenza, each year across North America. These drugs include ibuprofen, acetaminophen and acetylsalicylic acid.

"When they have flu, people often take medication that reduces their fever. No-one likes to feel miserable, but it turns out that our comfort might be at the cost of infecting others," said lead author David Earn, an investigator with the Michael G. DeGroote Institute for Infectious Disease Research (IIDR) and professor of mathematics at McMaster University.

"Because fever can actually help lower the amount of virus in a sick person's body and reduce the chance of transmitting disease to others, taking drugs that reduce fever can increase transmission. We've discovered that this increase has significant effects when we scale up to the level of the whole population."

The study, published in the Proceedings of the Royal Society B today, was co-authored with McMaster professors Ben Bolker, of the departments of mathematics & statistics and biology and the IIDR, and Paul Andrews of the Department of Psychology, Neuroscience and Behaviour.

"People often take -- or give their kids -- fever-reducing drugs so they can go to work or school," Earn said. "They may think the risk of infecting others is lower because the fever is lower. In fact, the opposite may be true: the ill people may give off more virus because fever has been reduced."

The researchers assembled information from many sources, including experiments on human volunteers and on ferrets (which are the best animal model for human influenza). They then used a mathematical model to compute how the increase in the amount of virus given off by a single person taking fever-reducing drugs would increase the overall number of cases in a typical year, or in a year when a new strain of influenza caused a flu pandemic.

The bottom line is that fever suppression increases the number of annual cases by approximately five per cent, corresponding to more than 1,000 additional deaths from influenza in a typical year across North America.

"This research is important because it will help us understand how better to curb the spread of influenza," said David Price, professor and chair of family medicine for McMaster's Michael G. DeGroote School of Medicine.

The family physician agrees with the researchers' conclusions. "As always, Mother Nature knows best. Fever is a defence mechanism to protect ourselves and others. Fever-reducing medication should only be taken to take the edge off the discomfort, not to allow people to go out into the community when they should still stay home."

"People are often advised to take fever-reducing drugs and medical texts state that doing so is harmless," added Andrews. "This view needs to change."

The research findings echo previous research that has shown how the widespread use of medication can have unwanted effects on the transmission of disease. For example, it is now well accepted that the indiscriminate use of antibiotics has driven the emergence of life-threatening antibiotic resistant bacteria.

Bolker said: "Parents and health care professionals alike have focused on making their children or patients feel better by reducing fever, without being aware of potentially harmful side effects at the population level.

"Although we have put together the best available estimates for each parameter in our model, we have a long way to go before we can make concrete policy proposals.

"We need more experiments to determine precisely how much reducing fever increases viral shedding in humans, and to estimate how much more people spread disease because they are more active in the community when they alleviate their symptoms by taking medication."

The study was supported by the Natural Sciences and Engineering Research Council of Canada and the Michael G. DeGroote Institute for Infectious Disease Research.

Note to Editors

A photo of the McMaster researchers can be found at:

For further information

Veronica McGuire
Media Relations
Faculty of Health Science
McMaster University
905-525-9140, ext. 22169

Veronica McGuire | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

nachricht New potential cancer treatment using microwaves to target deep tumors
12.10.2016 | University of Texas at Arlington

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>