Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers find fever-reducing medications may aid spread of influenza

22.01.2014
Contrary to popular belief, fever-reducing medication may inadvertently cause more harm than good.

New research from McMaster University has discovered that the widespread use of medications that contain fever-reducing drugs may lead to tens of thousands more influenza cases, and more than a thousand deaths attributable to influenza, each year across North America. These drugs include ibuprofen, acetaminophen and acetylsalicylic acid.

"When they have flu, people often take medication that reduces their fever. No-one likes to feel miserable, but it turns out that our comfort might be at the cost of infecting others," said lead author David Earn, an investigator with the Michael G. DeGroote Institute for Infectious Disease Research (IIDR) and professor of mathematics at McMaster University.

"Because fever can actually help lower the amount of virus in a sick person's body and reduce the chance of transmitting disease to others, taking drugs that reduce fever can increase transmission. We've discovered that this increase has significant effects when we scale up to the level of the whole population."

The study, published in the Proceedings of the Royal Society B today, was co-authored with McMaster professors Ben Bolker, of the departments of mathematics & statistics and biology and the IIDR, and Paul Andrews of the Department of Psychology, Neuroscience and Behaviour.

"People often take -- or give their kids -- fever-reducing drugs so they can go to work or school," Earn said. "They may think the risk of infecting others is lower because the fever is lower. In fact, the opposite may be true: the ill people may give off more virus because fever has been reduced."

The researchers assembled information from many sources, including experiments on human volunteers and on ferrets (which are the best animal model for human influenza). They then used a mathematical model to compute how the increase in the amount of virus given off by a single person taking fever-reducing drugs would increase the overall number of cases in a typical year, or in a year when a new strain of influenza caused a flu pandemic.

The bottom line is that fever suppression increases the number of annual cases by approximately five per cent, corresponding to more than 1,000 additional deaths from influenza in a typical year across North America.

"This research is important because it will help us understand how better to curb the spread of influenza," said David Price, professor and chair of family medicine for McMaster's Michael G. DeGroote School of Medicine.

The family physician agrees with the researchers' conclusions. "As always, Mother Nature knows best. Fever is a defence mechanism to protect ourselves and others. Fever-reducing medication should only be taken to take the edge off the discomfort, not to allow people to go out into the community when they should still stay home."

"People are often advised to take fever-reducing drugs and medical texts state that doing so is harmless," added Andrews. "This view needs to change."

The research findings echo previous research that has shown how the widespread use of medication can have unwanted effects on the transmission of disease. For example, it is now well accepted that the indiscriminate use of antibiotics has driven the emergence of life-threatening antibiotic resistant bacteria.

Bolker said: "Parents and health care professionals alike have focused on making their children or patients feel better by reducing fever, without being aware of potentially harmful side effects at the population level.

"Although we have put together the best available estimates for each parameter in our model, we have a long way to go before we can make concrete policy proposals.

"We need more experiments to determine precisely how much reducing fever increases viral shedding in humans, and to estimate how much more people spread disease because they are more active in the community when they alleviate their symptoms by taking medication."

The study was supported by the Natural Sciences and Engineering Research Council of Canada and the Michael G. DeGroote Institute for Infectious Disease Research.

Note to Editors

A photo of the McMaster researchers can be found at: http://fhs.mcmaster.ca/media/fever/

For further information

Veronica McGuire
Media Relations
Faculty of Health Science
McMaster University
905-525-9140, ext. 22169
vmcguir@mcmaster.ca

Veronica McGuire | EurekAlert!
Further information:
http://www.mcmaster.ca

More articles from Health and Medicine:

nachricht Columbia Engineering team develops targeted drug delivery to lung
03.09.2015 | Columbia University School of Engineering and Applied Science

nachricht Reward, aversion behaviors activated through same brain pathways
03.09.2015 | Washington University School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fraunhofer ISE Develops Highly Compact Inverter for Uninterruptible Power Supplies

Silicon Carbide Components Enable Efficiency of 98.7 percent

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE have developed a highly compact and efficient inverter for use in uninterruptible power...

Im Focus: How wind sculpted Earth's largest dust deposit

China's Loess Plateau was formed by wind alternately depositing dust or removing dust over the last 2.6 million years, according to a new report from University of Arizona geoscientists. The study is the first to explain how the steep-fronted plateau formed.

China's Loess Plateau was formed by wind alternately depositing dust or removing dust over the last 2.6 million years, according to a new report from...

Im Focus: An engineered surface unsticks sticky water droplets

The leaves of the lotus flower, and other natural surfaces that repel water and dirt, have been the model for many types of engineered liquid-repelling surfaces. As slippery as these surfaces are, however, tiny water droplets still stick to them. Now, Penn State researchers have developed nano/micro-textured, highly slippery surfaces able to outperform these naturally inspired coatings, particularly when the water is a vapor or tiny droplets.

Enhancing the mobility of liquid droplets on rough surfaces could improve condensation heat transfer for power-plant heat exchangers, create more efficient...

Im Focus: Increasingly severe disturbances weaken world's temperate forests

Longer, more severe, and hotter droughts and a myriad of other threats, including diseases and more extensive and severe wildfires, are threatening to transform some of the world's temperate forests, a new study published in Science has found. Without informed management, some forests could convert to shrublands or grasslands within the coming decades.

"While we have been trying to manage for resilience of 20th century conditions, we realize now that we must prepare for transformations and attempt to ease...

Im Focus: OU astrophysicist and collaborators find supermassive black holes in quasar nearest Earth

A University of Oklahoma astrophysicist and his Chinese collaborator have found two supermassive black holes in Markarian 231, the nearest quasar to Earth, using observations from NASA's Hubble Space Telescope.

The discovery of two supermassive black holes--one larger one and a second, smaller one--are evidence of a binary black hole and suggests that supermassive...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Together - Work - Experience

03.09.2015 | Event News

Networking conference in Heidelberg for outstanding mathematicians and computer scientists

20.08.2015 | Event News

Scientists meet in Münster for the world’s largest Chitin und Chitosan Conference

20.08.2015 | Event News

 
Latest News

Lighter with Laser Welding

03.09.2015 | Process Engineering

For 2-D boron, it's all about that base

03.09.2015 | Materials Sciences

Phagraphene, a 'relative' of graphene, discovered

03.09.2015 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>