Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers find evidence that brain compensates after traumatic injury

26.11.2012
Researchers at Albert Einstein College of Medicine of Yeshiva University and Montefiore Medical Center have found that a special magnetic resonance imaging (MRI) technique may be able to predict which patients who have experienced concussions will improve.

The results, which were presented today at the annual meeting of the Radiological Society of North America (RSNA), suggest that, in some patients, the brain may change to compensate for the damage caused by the injury.

"This finding could lead to strategies for preventing and repairing the damage that accompanies traumatic brain injury," said Michael Lipton, M.D., Ph.D., who led the study and is associate director of the Gruss Magnetic Resonance Research Center at Einstein and medical director of MRI services at Montefiore, the University Hospital and academic medical center for Einstein.

Each year, 1.7 million people in the U.S., sustain traumatic brain injuries (TBI), according to the Centers for Disease Control and Prevention. Concussions and other mild TBIs (or mTBIs) account for at least 75 percent of these injuries. Following a concussion, some patients experience a brief loss of consciousness. Other symptoms include headache, dizziness, memory loss, attention deficit, depression and anxiety. Some of these conditions may persist for months or even years in as many as 30 percent of patients.

The Einstein study involved 17 patients brought to the emergency department at Montefiore and Jacobi Medical Centers and diagnosed with mTBI. Within two weeks of their injuries, the patients underwent diffusion tensor imaging (DTI), which "sees" the movement of water molecules within and along axons, the nerve fibers that constitute the brain's white matter. DTI allows researchers to measure the uniformity of water movement (called fractional anisotropy or FA) throughout the brain. Areas of low FA indicate axonal injury while areas of abnormally high FA indicate changes in the brain.

"In a traumatic brain injury, it's not one specific area that is affected but multiple areas of the brain which are interconnected by axons," said Dr. Lipton, who is also associate professor of radiology, of psychiatry and behavioral sciences, and in the Dominick P. Purpura Department of Neuroscience at Einstein. "Abnormally low FA within white matter has been correlated with cognitive impairment in concussion patients. We believe that high FA is evidence not of axonal injury, but of brain changes that are occurring in response to the trauma."

One year after their brain injury, the patients completed two standard questionnaires to assess their post-concussion symptoms and evaluate their health status and quality of life. "Most TBI studies assess cognitive function, but it is not at all clear if and how well such measures assess real-life functioning," said Dr. Lipton. "Our questionnaires asked about post-concussion symptoms and how those symptoms affected patients' health and quality of life."

Comparing the DTI data to the patient questionnaires, the researchers found that the presence of abnormally high FA predicted fewer post-concussion symptoms and better functioning. The results suggest that the brain may be actively compensating for its injuries in patients who exhibit areas of high FA on DTI.

"These results could lead to better treatment for concussion if we can find ways to enhance the brain's compensatory mechanisms." Dr. Lipton said.

Dr. Lipton's Einstein and Montefiore coauthors are Sara B. Rosenbaum, B.A., Namhee Kim, Ph.D., Ph.D., Craig A. Branch, Ph.D., Richard B. Lipton, M.D., and Molly E. Zimmerman, Ph.D.

Albert Einstein College of Medicine

Albert Einstein College of Medicine of Yeshiva University is one of the nation's premier centers for research, medical education and clinical investigation. In 2012, Einstein received over $160 million in awards from the NIH for major research centers at Einstein in diabetes, cancer, liver disease, and AIDS, as well as other areas. Through its affiliation with Montefiore Medical Center, the University Hospital for Einstein, and six other hospital systems, the College of Medicine runs one of the largest residency and fellowship training programs in the medical and dental professions in the United States. For more information, please visit www.einstein.yu.edu and follow us on Twitter @EinsteinMed.

Montefiore Medical Center

As the University Hospital for Albert Einstein College of Medicine, Montefiore is a premier academic medical center nationally renowned for its clinical excellence, scientific discovery and commitment to its community. Montefiore is consistently recognized among the top hospitals nationally by U.S. News & World Report, and excels at educating tomorrow's healthcare professionals in superior clinical and humanistic care. Linked by advanced technology, Montefiore is a comprehensive and integrated health system that derives its inspiration for excellence from its patients and community. For more information, please visit www.montefiore.org and www.montekids.org and follow us on Twitter @MontefioreNews.

Kim Newman | EurekAlert!
Further information:
http://www.einstein.yu.edu

More articles from Health and Medicine:

nachricht NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures
17.11.2017 | National Institute of Standards and Technology (NIST)

nachricht High speed video recording precisely measures blood cell velocity
15.11.2017 | ITMO University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>