Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers explore a new method to study cholesterol distribution on cells

21.03.2017

Findings could eventually help identify mechanisms linking cholesterol to coronary artery disease

Researchers from UCLA and the University of Western Australia have developed a new way of visualizing the distribution of cholesterol in cells and tissues. Their research provides insights into the movement of cholesterol into and out of cells and could eventually identify mechanisms linking cholesterol to coronary artery disease.


NanoSIMS imaging of 'accessible cholesterol' on cultured cells, demonstrating increased amounts of accessible cholesterol on the microvilli projections from cells.

Credit: Haibo Jiang and Stephen Young

Using a new high-resolution imaging mass spectrometry approach called NanoSIMS imaging, the team was able to visualize and quantify a pool of cholesterol called "accessible cholesterol" on the surface of cells.

Cholesterol is an essential lipid and is critical for maintaining the integrity of the plasma membrane in every cell in the body. But elevated levels of cholesterol in the blood represent a risk factor for coronary artery disease.

The accessible pool of cholesterol on the plasma membrane is thought to play a role in regulating production of cholesterol by cells and likely plays a role in the ability of cells to unload surplus cholesterol. "Accessible cholesterol" on the surface of cells can be detected with a cholesterol-binding protein from bacteria.

By taking advantage of the bacterial protein, along with NanoSIMS imaging, researchers showed that the accessible pool of cholesterol is not evenly distributed on a cell's plasma membrane but instead is highly enriched on specialized projections from the plasma membrane called microvilli.

"In the past, other scientists had speculated that microvilli play a role in moving cholesterol into and out of cells," said the study's co-author, Dr. Stephen Young, a distinguished professor of medicine and human genetics at the David Geffen School of Medicine at UCLA. "The discovery that 'accessible cholesterol' is highly enriched in microvilli lends support to that idea."

The findings were recently published in the journal Proceedings of the National Academy of Sciences.

Dr. Haibo Jiang, a study co-author, noted that NanoSIMS imaging provides unique insights into cholesterol distribution on the plasma membrane and future studies will make it possible to assess mechanisms by which cells dispose of excess cholesterol.

"We would like to gain a better understanding of the mechanisms of cholesterol movement in cells and tissues," said Jiang, a lecturer from the University of Western Australia's Centre for Microscopy, Characterisation and Analysis. "We believe that NanoSIMS imaging could yield new strategies for lowering cholesterol levels in the blood or at least new strategies for optimizing the effects of existing cholesterol-lowering drugs."

Added Young: "The plan now is to use NanoSIMS, along with novel biochemical approaches, to investigate cholesterol distribution and movement in multiple cell types."

###

Additional UCLA authors included: Cuiewen He, Xuchen Hu, Rachel Jung, Thomas Weston, Norma Sandoval, Peter Tontonoz and Loren Fong. Jiang and Matthew Killburn are from the University of Western Australia.

The research was supported by the National Heart, Lung, and Blood Institute.

Amy Albin | EurekAlert!

More articles from Health and Medicine:

nachricht How cancer metastasis happens: Researchers reveal a key mechanism
19.01.2018 | Weill Cornell Medicine

nachricht Researchers identify new way to unmask melanoma cells to the immune system
17.01.2018 | Duke University Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>