Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers examine role of inflammatory mechanisms in a healing heart

01.12.2011
Researchers Examine Role of Inflammatory Mechanisms in a Healing Heart Opening New Avenues for Prevention and Treatment of Heart Failure

Virginia Commonwealth University researchers have found that an inflammatory mechanism known as inflammasome may lead to more damage in the heart following injury such as a heart attack, pointing researchers toward developing more targeted strategies to block the inflammatory mechanisms involved.

Following a heart attack, an inflammatory process occurs in the heart due to the lack of oxygen and nutrients. This process helps the heart to heal, but may also promote further damage to the heart. The mechanisms by which the heart responds to injury are not fully understood, so researchers have been examining the cellular pathways involved to gain further insight.

In a study published online the week of Nov. 21 in the Proceedings of the National Academy of Sciences, researchers addressed the role of a specific inflammatory mechanism, called inflammasome, during the process of healing in the heart. Using an animal model, the team found that inflammasome amplifies the response by generating the production of a key inflammatory mediator known as Interleukin-1â. Further, they described that pharmacologic inhibition of the formation of inflammasome prevents heart enlargement and dysfunction.

“Defining the role of the inflammasome in the response to injury in the heart and the possibility to intervene opens a new area of investigation for the prevention and treatment of heart failure following a heart attack,” said Antonio Abbate, M.D., assistant professor of medicine in the VCU Department of Internal Medicine and Division of Cardiology.

According to Abbate, who serves as the interim director for the cardiac intensive care unit at the VCU Pauley Heart Center, this study supports the team’s previous findings that showed that Interleukin-1â affects the heart, and blocking Interleukin-1â benefits patients of heart attack and heart failure.

“Based on the findings of the current study we are even more convinced that blocking Interleukin-1â may be safe and beneficial, and we are now exploring novel ways to do so,” he said.

Abbate said there are four ongoing clinical trials at the VCU Pauley Heart Center in patients with various heart conditions treated with a drug called anakinra which blocks Interleukin-1â.

Abbate and his team continue to examine the molecular mechanisms of inflammasome formation and heart injury, and hope to determine new ways to intervene with potentially more targeted strategies in the future.

The study was conducted in the Victoria W. Johnson Center for Research at VCU, which is directed by Norbert Voelkel, M.D, professor of medicine in the Pulmonary and Critical Care Division.

Abbate led with a multidisciplinary team of VCU researchers biologists, physicians, and pharmacists including Eleonora Mezzaroma, Ph.D., and Stefano Toldo, Ph.D., post-doctoral associates in the VCU Pauley Heart Center; Daniela Farkas, B.S., research specialist in the Victoria Johnson Research Laboratory; Benjamin Van Tassell, Pharm.D., assistant professor of pharmacology and outcome sciences; and Fadi Salloum, Ph.D., assistant professor of medicine and physiology in the VCU Pauley Heart Center.

This study was supported by a grant from the American Heart Association.

EDITOR’S NOTE: A copy of the study is available for reporters by contacting the PNAS News Office at 202-334-1310 or PNASnews@nas.edu.

About VCU and the VCU Medical Center
Virginia Commonwealth University is a major, urban public research university with national and international rankings in sponsored research. Located on two downtown campuses in Richmond, VCU enrolls more than 32,000 students in 211 certificate and degree programs in the arts, sciences and humanities. Sixty-nine of the programs are unique in Virginia, many of them crossing the disciplines of VCU’s 13 schools and one college. MCV Hospitals and the health sciences schools of Virginia Commonwealth University compose the VCU Medical Center, one of the nation’s leading academic medical centers. For more, see www.vcu.edu.

Sathya Achia Abraham | EurekAlert!
Further information:
http://www.vcu.edu

More articles from Health and Medicine:

nachricht New vaccine production could improve flu shot accuracy
25.07.2017 | Duke University

nachricht Chances to treat childhood dementia
24.07.2017 | Julius-Maximilians-Universität Würzburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA mission surfs through waves in space to understand space weather

25.07.2017 | Physics and Astronomy

Strength of tectonic plates may explain shape of the Tibetan Plateau, study finds

25.07.2017 | Earth Sciences

The dense vessel network regulates formation of thrombocytes in the bone marrow

25.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>