Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Researchers examine role of inflammatory mechanisms in a healing heart

Researchers Examine Role of Inflammatory Mechanisms in a Healing Heart Opening New Avenues for Prevention and Treatment of Heart Failure

Virginia Commonwealth University researchers have found that an inflammatory mechanism known as inflammasome may lead to more damage in the heart following injury such as a heart attack, pointing researchers toward developing more targeted strategies to block the inflammatory mechanisms involved.

Following a heart attack, an inflammatory process occurs in the heart due to the lack of oxygen and nutrients. This process helps the heart to heal, but may also promote further damage to the heart. The mechanisms by which the heart responds to injury are not fully understood, so researchers have been examining the cellular pathways involved to gain further insight.

In a study published online the week of Nov. 21 in the Proceedings of the National Academy of Sciences, researchers addressed the role of a specific inflammatory mechanism, called inflammasome, during the process of healing in the heart. Using an animal model, the team found that inflammasome amplifies the response by generating the production of a key inflammatory mediator known as Interleukin-1â. Further, they described that pharmacologic inhibition of the formation of inflammasome prevents heart enlargement and dysfunction.

“Defining the role of the inflammasome in the response to injury in the heart and the possibility to intervene opens a new area of investigation for the prevention and treatment of heart failure following a heart attack,” said Antonio Abbate, M.D., assistant professor of medicine in the VCU Department of Internal Medicine and Division of Cardiology.

According to Abbate, who serves as the interim director for the cardiac intensive care unit at the VCU Pauley Heart Center, this study supports the team’s previous findings that showed that Interleukin-1â affects the heart, and blocking Interleukin-1â benefits patients of heart attack and heart failure.

“Based on the findings of the current study we are even more convinced that blocking Interleukin-1â may be safe and beneficial, and we are now exploring novel ways to do so,” he said.

Abbate said there are four ongoing clinical trials at the VCU Pauley Heart Center in patients with various heart conditions treated with a drug called anakinra which blocks Interleukin-1â.

Abbate and his team continue to examine the molecular mechanisms of inflammasome formation and heart injury, and hope to determine new ways to intervene with potentially more targeted strategies in the future.

The study was conducted in the Victoria W. Johnson Center for Research at VCU, which is directed by Norbert Voelkel, M.D, professor of medicine in the Pulmonary and Critical Care Division.

Abbate led with a multidisciplinary team of VCU researchers biologists, physicians, and pharmacists including Eleonora Mezzaroma, Ph.D., and Stefano Toldo, Ph.D., post-doctoral associates in the VCU Pauley Heart Center; Daniela Farkas, B.S., research specialist in the Victoria Johnson Research Laboratory; Benjamin Van Tassell, Pharm.D., assistant professor of pharmacology and outcome sciences; and Fadi Salloum, Ph.D., assistant professor of medicine and physiology in the VCU Pauley Heart Center.

This study was supported by a grant from the American Heart Association.

EDITOR’S NOTE: A copy of the study is available for reporters by contacting the PNAS News Office at 202-334-1310 or

About VCU and the VCU Medical Center
Virginia Commonwealth University is a major, urban public research university with national and international rankings in sponsored research. Located on two downtown campuses in Richmond, VCU enrolls more than 32,000 students in 211 certificate and degree programs in the arts, sciences and humanities. Sixty-nine of the programs are unique in Virginia, many of them crossing the disciplines of VCU’s 13 schools and one college. MCV Hospitals and the health sciences schools of Virginia Commonwealth University compose the VCU Medical Center, one of the nation’s leading academic medical centers. For more, see

Sathya Achia Abraham | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Inflammation Triggers Unsustainable Immune Response to Chronic Viral Infection
24.10.2016 | Universität Basel

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Oasis of life in the ice-covered central Arctic

24.10.2016 | Earth Sciences

‘Farming’ bacteria to boost growth in the oceans

24.10.2016 | Life Sciences

Light-driven atomic rotations excite magnetic waves

24.10.2016 | Physics and Astronomy

More VideoLinks >>>