Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Use Drug-radiation Combo to Eradicate Lung Cancer

02.11.2009
Researchers at UT Southwestern Medical Center have eliminated non-small cell lung (NSCL) cancer in mice by using an investigative drug called BEZ235 in combination with low-dose radiation.

In a study appearing in the October issue of Cancer Research, UT Southwestern researchers found that if they administered BEZ235 before they damaged the DNA of tumor cells with otherwise nontoxic radiation, the drug blocked the pro-survival actions of a protein called PI3K, which normally springs into action to keep tumor cells alive while they repair DNA damage.

Researchers tested this novel therapeutic strategy in mice transplanted with NSCL cancers obtained from patients.

They found that tumors in the mice treated with BEZ235 alone were significantly smaller than those in mice not given the drug. Although the tumors stopped growing, they did not die.

By contrast, tumors were completely eradicated in mice treated with a combination of BEZ235 and radiation.

“These early results suggest that the drug-radiation combination might be an effective therapy in lung cancer patients,” said Dr. Pier Paolo Scaglioni, assistant professor of internal medicine at UT Southwestern and senior author of the study.

NSCL cancer is a leading cause of cancer-related deaths worldwide. The cancer cells often harbor mutations in a gene called K-RAS. Patients with such K-RAS mutations typically are more resistant to treatment with radiation and have a poor prognosis.

K-RAS mutations lead to the activation of networks, or pathways, of several so-called signaling proteins, which in turn play key roles in the regulation of tumor growth. One of these proteins, called PI3K, is activated to keep cells alive that have sustained DNA damage.

Several components of the signaling pathways, including PI3K, have been investigated as possible anti-cancer drug targets. The investigational drug BEZ235 is currently being tested in clinical trials against PI3K and another signaling protein called mTOR.

“To date, no effective targeted therapy exists for NSCL cancer tumors that harbor K-RAS mutations,” Dr. Scaglioni said.

Dr. Scaglioni and his team first tested the effectiveness of BEZ235 alone and found that it inhibits the proliferation of both lung cancer cells cultured in vitro and the growth of lung-cancer tumors in mice.

“The results were striking, but we wanted to find a strategy to precipitate cell death of these tumors,” said Dr. Georgia Konstantinidou, a postdoctoral researcher at UT Southwestern and the lead author of the study. “We did it with radiation, which is a standard form of treatment for lung cancer.”

Dr. Scaglioni’s team exposed isolated cancer cells to BEZ235 followed by low doses of radiation, which induced small breaks in the DNA of the cells but otherwise would have no effect on cell survival. When this type of DNA damage occurs, cancer cells rely on the PI3K signaling pathway to survive while they repair their DNA.

“We stressed the cells in such a way that they needed this signaling pathway to survive,” Dr. Scaglioni said. “Without the PI3K response, they will die.”

When the researchers then treated the cells with BEZ235, which blocks PI3K, the stressed NSCL cancer cells readily underwent programmed cell death.

Dr. Scaglioni said that the next step is to use BEZ235 or similar drugs in clinical trials on NSCL cancer patients as well as other cancers, including pancreatic, colon and thyroid cancers, where the PI3K signaling pathway also plays a role.

Other UT Southwestern researchers involved in the study included Dr. Erik Bey, assistant instructor at the Harold C. Simmons Comprehensive Cancer Center, Dr. Andrea Rabellino, postdoctoral researcher in internal medicine, Dr. Katja Schuster, postdoctoral researcher in internal medicine, Dr. Adi Gazdar, professor of pathology in UT Southwestern’s Nancy B. and Jake L. Hamon Center for Therapeutic Oncology Research, and Dr. David Boothman, professor in the Simmons Comprehensive Cancer Center and of pharmacology and radiation oncology. Researchers from the University of Camerino in Italy and Novartis Pharma in Switzerland also participated.

The work was supported by the National Institutes of Health, American Cancer Society, Concern Foundation, Gibson Foundation, Leukemia of Texas, U.S. Department of Energy and the American Italian Cancer Foundation.

Visit www.utsouthwestern.org/cancercenter to learn more about UT Southwestern’s clinical services for cancer.

Dr. Pier Paolo Scaglioni -- http://www.utsouthwestern.edu/findfac/professional/0,2356,86271,00.html

Dr. Pier Paolo Scaglioni | Newswise Science News
Further information:
http://www.utsouthwestern.edu/

More articles from Health and Medicine:

nachricht The end of pneumonia? New vaccine offers hope
23.10.2017 | University at Buffalo

nachricht Scientists track ovarian cancers to site of origin: Fallopian tubes
23.10.2017 | Johns Hopkins Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Microfluidics probe 'cholesterol' of the oil industry

23.10.2017 | Life Sciences

Gamma rays will reach beyond the limits of light

23.10.2017 | Physics and Astronomy

The end of pneumonia? New vaccine offers hope

23.10.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>