Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Use Drug-radiation Combo to Eradicate Lung Cancer

02.11.2009
Researchers at UT Southwestern Medical Center have eliminated non-small cell lung (NSCL) cancer in mice by using an investigative drug called BEZ235 in combination with low-dose radiation.

In a study appearing in the October issue of Cancer Research, UT Southwestern researchers found that if they administered BEZ235 before they damaged the DNA of tumor cells with otherwise nontoxic radiation, the drug blocked the pro-survival actions of a protein called PI3K, which normally springs into action to keep tumor cells alive while they repair DNA damage.

Researchers tested this novel therapeutic strategy in mice transplanted with NSCL cancers obtained from patients.

They found that tumors in the mice treated with BEZ235 alone were significantly smaller than those in mice not given the drug. Although the tumors stopped growing, they did not die.

By contrast, tumors were completely eradicated in mice treated with a combination of BEZ235 and radiation.

“These early results suggest that the drug-radiation combination might be an effective therapy in lung cancer patients,” said Dr. Pier Paolo Scaglioni, assistant professor of internal medicine at UT Southwestern and senior author of the study.

NSCL cancer is a leading cause of cancer-related deaths worldwide. The cancer cells often harbor mutations in a gene called K-RAS. Patients with such K-RAS mutations typically are more resistant to treatment with radiation and have a poor prognosis.

K-RAS mutations lead to the activation of networks, or pathways, of several so-called signaling proteins, which in turn play key roles in the regulation of tumor growth. One of these proteins, called PI3K, is activated to keep cells alive that have sustained DNA damage.

Several components of the signaling pathways, including PI3K, have been investigated as possible anti-cancer drug targets. The investigational drug BEZ235 is currently being tested in clinical trials against PI3K and another signaling protein called mTOR.

“To date, no effective targeted therapy exists for NSCL cancer tumors that harbor K-RAS mutations,” Dr. Scaglioni said.

Dr. Scaglioni and his team first tested the effectiveness of BEZ235 alone and found that it inhibits the proliferation of both lung cancer cells cultured in vitro and the growth of lung-cancer tumors in mice.

“The results were striking, but we wanted to find a strategy to precipitate cell death of these tumors,” said Dr. Georgia Konstantinidou, a postdoctoral researcher at UT Southwestern and the lead author of the study. “We did it with radiation, which is a standard form of treatment for lung cancer.”

Dr. Scaglioni’s team exposed isolated cancer cells to BEZ235 followed by low doses of radiation, which induced small breaks in the DNA of the cells but otherwise would have no effect on cell survival. When this type of DNA damage occurs, cancer cells rely on the PI3K signaling pathway to survive while they repair their DNA.

“We stressed the cells in such a way that they needed this signaling pathway to survive,” Dr. Scaglioni said. “Without the PI3K response, they will die.”

When the researchers then treated the cells with BEZ235, which blocks PI3K, the stressed NSCL cancer cells readily underwent programmed cell death.

Dr. Scaglioni said that the next step is to use BEZ235 or similar drugs in clinical trials on NSCL cancer patients as well as other cancers, including pancreatic, colon and thyroid cancers, where the PI3K signaling pathway also plays a role.

Other UT Southwestern researchers involved in the study included Dr. Erik Bey, assistant instructor at the Harold C. Simmons Comprehensive Cancer Center, Dr. Andrea Rabellino, postdoctoral researcher in internal medicine, Dr. Katja Schuster, postdoctoral researcher in internal medicine, Dr. Adi Gazdar, professor of pathology in UT Southwestern’s Nancy B. and Jake L. Hamon Center for Therapeutic Oncology Research, and Dr. David Boothman, professor in the Simmons Comprehensive Cancer Center and of pharmacology and radiation oncology. Researchers from the University of Camerino in Italy and Novartis Pharma in Switzerland also participated.

The work was supported by the National Institutes of Health, American Cancer Society, Concern Foundation, Gibson Foundation, Leukemia of Texas, U.S. Department of Energy and the American Italian Cancer Foundation.

Visit www.utsouthwestern.org/cancercenter to learn more about UT Southwestern’s clinical services for cancer.

Dr. Pier Paolo Scaglioni -- http://www.utsouthwestern.edu/findfac/professional/0,2356,86271,00.html

Dr. Pier Paolo Scaglioni | Newswise Science News
Further information:
http://www.utsouthwestern.edu/

More articles from Health and Medicine:

nachricht One gene closer to regenerative therapy for muscular disorders
01.06.2017 | Cincinnati Children's Hospital Medical Center

nachricht The gut microbiota plays a key role in treatment with classic diabetes medication
01.06.2017 | University of Gothenburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>