Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers in Dresden succeed a break-through in diabetes therapy utilizing artificial pancreas

29.10.2013
Human beta cells of the islets of Langerhans utilized in a bio-reactor implant produced reliably insulin in a type 1 diabetes patient for a whole year - for the first time, researcher at the University Hospital Carl Gustav Carus Dresden, have demonstrated an artificial pancreas system. The implant restored the physiological function of insulin production in a type 1 diabetes patient.

The team of Professor Dr Stefan R. Bornstein, Director of the Department of Medicine III in Dresden, implanted the bio-reactor in a patient. The results of the first year are now published in the Journal of Proceedings of the National Academy of Sciences (PNAS 2013; doi:10.1073/pnas.1317561110).

The novel approach has the potential to replace the transplantation with subsequent immunosuppression. However, more research and a broader study is necessary before a large number of type 1 diabetes patients could benefit from this findings.

For the very first time ever, a patient with type 1 diabetes got an artificial pancreas system implanted which produces vital insulin in islet cells like in the pancreas. The small bio-reactor which looks like a little tin has been in the patient body for about one year. The artificial system which has been developed by an Israeli company supersedes an immunosuppression completely. The donor cells will be protected against immune system responses of the patient.

In reverse the insulin will be released into the body. Prof Bornstein, Director of the Department of Medicine III at the University Hospital: “The controlled supply of the cells with oxygen is vital to keep them alive.” He is convinced that the new system shall revolutionise the therapy of diabetes. Many more patients with diabetes type 1 will benefit from a transplantation of islet cells because the recipients do not need any immunosuppressive drugs for their lifetime.

„This is further proof of 20 years successful alliance of medical research and care in Dresden”, says Prof. Michael Albrecht, Medical Manager of the University Hospital Carl Gustav Carus. “This impressive result shows our demand implementing basic research in favour of our patients – the primary objective of the Medical Faculty in Dresden”, says Prof Dr Heinz Reichmann, dean of Medical Faculty Carl Gustav Carus of Technical University Dresden.

Nobel medicine winner Prof Andrew V. Schally of Miller School of Medicine at the University of Miami, who has a research collaboration with Dresden, pronounced “This is a success of historical meaning“. Despite medication, some patients with type 1 diabetes suffer of life threatening deviation of their glucose balance. Transplantation of pancreas as well as islet cells are the only two options to replace insulin producing beta cells and restore the physiological function of insulin production. Both options mean a considerably better control of diabetes and quality of life for the patient. However, the permanent taking of immunosuppressive drugs makes patients susceptible for infections and other adverse effects like a higher risk of cancer. Therefore, these treatments were considered for patients with special medical requirements only.

Dr Barbara Ludwig started the program of transplantation of human beta cells of the islets of Langerhans in 2008. It is the first and only centre of its kind in Germany. The main interest of Dr Ludwig’s group is the quality improvement of human beta cell transplantations. The artificial pancreas system was intensively tested in animals with the colleagues from Israel. The result of this cooperation project was recently published in Proceedings of the National Academy of Sciences (PNAS 2013; doi:10.1073/pnas.1317561110).

Surely, more work has to be done, but Prof Bornstein is certain that the new system will be a serious option in therapy of diabetes in five years time.

Contact:
University Hospital Carl Gustav Carus Dresden
Technical University Dresden
Department of Medicine III
Prof Dr Stefan R. Bornstein
Tel.: +49 351 458 5955
Fax: +49 351 458 6398
E-Mail: stefan.bornstein@uniklinkum-dresden.de

Susanne Witzigmann | idw
Further information:
http://www.uniklinkum-dresden.de

More articles from Health and Medicine:

nachricht Researchers identify new way to unmask melanoma cells to the immune system
17.01.2018 | Duke University Medical Center

nachricht Study advances gene therapy for glaucoma
17.01.2018 | University of Wisconsin-Madison

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Gran Chaco: Biodiversity at High Risk

17.01.2018 | Ecology, The Environment and Conservation

Only an atom thick: Physicists succeed in measuring mechanical properties of 2D monolayer materials

17.01.2018 | Physics and Astronomy

Fraunhofer HHI receives AIS Technology Innovation Award 2018 for 3D Human Body Reconstruction

17.01.2018 | Awards Funding

VideoLinks
B2B-VideoLinks
More VideoLinks >>>