Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers in Dresden succeed a break-through in diabetes therapy utilizing artificial pancreas

29.10.2013
Human beta cells of the islets of Langerhans utilized in a bio-reactor implant produced reliably insulin in a type 1 diabetes patient for a whole year - for the first time, researcher at the University Hospital Carl Gustav Carus Dresden, have demonstrated an artificial pancreas system. The implant restored the physiological function of insulin production in a type 1 diabetes patient.

The team of Professor Dr Stefan R. Bornstein, Director of the Department of Medicine III in Dresden, implanted the bio-reactor in a patient. The results of the first year are now published in the Journal of Proceedings of the National Academy of Sciences (PNAS 2013; doi:10.1073/pnas.1317561110).

The novel approach has the potential to replace the transplantation with subsequent immunosuppression. However, more research and a broader study is necessary before a large number of type 1 diabetes patients could benefit from this findings.

For the very first time ever, a patient with type 1 diabetes got an artificial pancreas system implanted which produces vital insulin in islet cells like in the pancreas. The small bio-reactor which looks like a little tin has been in the patient body for about one year. The artificial system which has been developed by an Israeli company supersedes an immunosuppression completely. The donor cells will be protected against immune system responses of the patient.

In reverse the insulin will be released into the body. Prof Bornstein, Director of the Department of Medicine III at the University Hospital: “The controlled supply of the cells with oxygen is vital to keep them alive.” He is convinced that the new system shall revolutionise the therapy of diabetes. Many more patients with diabetes type 1 will benefit from a transplantation of islet cells because the recipients do not need any immunosuppressive drugs for their lifetime.

„This is further proof of 20 years successful alliance of medical research and care in Dresden”, says Prof. Michael Albrecht, Medical Manager of the University Hospital Carl Gustav Carus. “This impressive result shows our demand implementing basic research in favour of our patients – the primary objective of the Medical Faculty in Dresden”, says Prof Dr Heinz Reichmann, dean of Medical Faculty Carl Gustav Carus of Technical University Dresden.

Nobel medicine winner Prof Andrew V. Schally of Miller School of Medicine at the University of Miami, who has a research collaboration with Dresden, pronounced “This is a success of historical meaning“. Despite medication, some patients with type 1 diabetes suffer of life threatening deviation of their glucose balance. Transplantation of pancreas as well as islet cells are the only two options to replace insulin producing beta cells and restore the physiological function of insulin production. Both options mean a considerably better control of diabetes and quality of life for the patient. However, the permanent taking of immunosuppressive drugs makes patients susceptible for infections and other adverse effects like a higher risk of cancer. Therefore, these treatments were considered for patients with special medical requirements only.

Dr Barbara Ludwig started the program of transplantation of human beta cells of the islets of Langerhans in 2008. It is the first and only centre of its kind in Germany. The main interest of Dr Ludwig’s group is the quality improvement of human beta cell transplantations. The artificial pancreas system was intensively tested in animals with the colleagues from Israel. The result of this cooperation project was recently published in Proceedings of the National Academy of Sciences (PNAS 2013; doi:10.1073/pnas.1317561110).

Surely, more work has to be done, but Prof Bornstein is certain that the new system will be a serious option in therapy of diabetes in five years time.

Contact:
University Hospital Carl Gustav Carus Dresden
Technical University Dresden
Department of Medicine III
Prof Dr Stefan R. Bornstein
Tel.: +49 351 458 5955
Fax: +49 351 458 6398
E-Mail: stefan.bornstein@uniklinkum-dresden.de

Susanne Witzigmann | idw
Further information:
http://www.uniklinkum-dresden.de

More articles from Health and Medicine:

nachricht Study suggests possible new target for treating and preventing Alzheimer's
02.12.2016 | Oregon Health & Science University

nachricht The first analysis of Ewing's sarcoma methyloma opens doors to new treatments
01.12.2016 | IDIBELL-Bellvitge Biomedical Research Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>