Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers discover underlying mechanisms of skin hardening syndromes

18.05.2011
Researchers from Boston University School of Medicine (BUSM) have discovered new details about the underlying mechanisms of skin hardening syndromes.

The team connected pharmacological properties of the Novartis Pharma AG drug called balicatib to the skin disorder for the first time after investigating adverse reactions suffered by patients participating in a clinical trial for the treatment of osteoporosis. These findings appear online in the Journal of the American Academy of Dermatology.

Balicatib was developed recently as an osteoporosis drug that can inhibit CathepsinK (catK), an enzyme involved with bone degradation. In a recent trial however, several patients on balicatib experienced hardening of the skin, most frequently around the neck, chest and abdomen. After examining the cases and relating them to recent reports of cathepsin K expression in the skin and the role of cathepsin K in degrading collagen and elastin, the investigators determined that the changes were a direct effect of the drug.

This case study adds a new class of medication to the short list of agents that induce skin hardening syndromes. It also proves that catK affects the skin as well as bones, and marks the first time that skin hardening can be convincingly linked to the pharmacologic properties of a drug.

"This observation emphasizes the importance of intracellular collagen degradation in the skin, a pathway so far vastly underappreciated," said Thomas Ruenger, MD, PhD, a professor and vice-chair of dermatology at BUSM. "This observation also sheds new light on our understanding of the mechanisms involved in morphea, or skin hardening. Failed collagen degradation has so far not been thought to cause morphea."

The researchers believe these findings have far-reaching implications for osteoporosis patients and those suffering from skin hardening syndromes.

DISCLAIMER: Dr. Ruenger served on the independent data safety monitoring board that monitored the clinical trial in which the described observations were made.

Nathan Bliss | EurekAlert!
Further information:
http://www.bmc.org

More articles from Health and Medicine:

nachricht PET imaging tracks Zika virus infection, disease progression in mouse model
20.09.2017 | US Army Medical Research Institute of Infectious Diseases

nachricht 'Exciting' discovery on path to develop new type of vaccine to treat global viruses
18.09.2017 | University of Southampton

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Molecular Force Sensors

20.09.2017 | Life Sciences

Producing electricity during flight

20.09.2017 | Power and Electrical Engineering

Tiny lasers from a gallery of whispers

20.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>