Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers discover new treatment to cure the MRSA ‘superbug’

14.11.2013
Recent work from Uni­ver­sity Dis­tin­guished Pro­fessor of Biology Kim Lewis promises to over­come one of the leading public health threats of our time.

In a ground­breaking study pub­lished Wednesday in the journal Nature, Lewis’ team presents a novel approach to treat and elim­i­nate methi­cillin resis­tant staphy­lo­coccus aureus, or MRSA, a potent bac­terium whose resis­tance to antibi­otics has kept it one step ahead of researchers. That is, until now.

The so-​​called “superbug” infects 1 mil­lion Amer­i­cans each year. A major problem with MRSA is the devel­op­ment of deep-​​seated chronic infec­tions such as osteomyelitis (bone infec­tion), endo­carditis (heart infec­tion), or infec­tions of implanted med­ical devices. Once estab­lished, these infec­tions are often incur­able, even when appro­priate antibi­otics are used.

Bac­teria such as MRSA have evolved to actively resist cer­tain antibi­otics, a fact that has gen­er­ated sig­nif­i­cant interest among the sci­en­tific and med­ical com­mu­ni­ties. But Lewis, Director of Northeastern’s Antimi­cro­bial Dis­covery Center, sus­pected that a dif­ferent adap­tive func­tion of bac­teria might be the true cul­prit in making these infec­tions so devastating.

The new work rep­re­sents the cul­mi­na­tion of more than a decade of research on a spe­cial­ized class of cells pro­duced by all pathogens called per­sis­ters. According to Lewis, these cells evolved to sur­vive. “Sur­vival is their only func­tion,” he said. “They don’t do any­thing else.”

Lewis and his research team posited that if they could kill these expert sur­vivors, per­haps they could cure chronic infections—even those resis­tant to mul­tiple antibi­otics such as MRSA. Fur­ther­more, said Brian Conlon, a post­doc­toral researcher in Lewis’ lab and first author on the paper, “if you can erad­i­cate the per­sis­ters, there’s less of a chance that resis­tance will develop at all.”

Lewis, who was elected to the Amer­ican Academy of Micro­bi­ology in 2011 for his schol­ar­ship in the field, has found that per­sis­ters achieve their sin­gular goal by entering a dor­mant state that makes them imper­vious to tra­di­tional antibi­otics. Since these drugs work by tar­geting active cel­lular func­tions, they are use­less against dor­mant per­sis­ters, which aren’t active at all. For this reason, per­sis­ters are crit­ical to the suc­cess of chronic infec­tions and biofilms, because as soon as a treat­ment runs its course, their reawak­ening allows for the infec­tion to estab­lish itself anew.

In the recent study, which also includes con­tri­bu­tions from assis­tant pro­fessor Steve Leonard of the Depart­ment of Phar­macy Prac­tice, Lewis’ team found that a drug called ADEP effec­tively wakes up the dor­mant cells and then ini­ti­ates a self-​​destruct mech­a­nism. The approach com­pletely erad­i­cated MRSA cells in a variety of lab­o­ra­tory exper­i­ments and, impor­tantly, in a mouse model of chronic MRSA infection.

Cou­pling ADEP with a tra­di­tional antibi­otic, Conlon noted, allowed the team to com­pletely destroy the bac­te­rial pop­u­la­tion without leaving any survivors.

As with all other antibi­otics, actively growing bac­te­rial cells will likely develop resis­tance to ADEP. How­ever, Lewis said, “cells that develop ADEP resis­tance become rather wimpy.” That is, other tra­di­tional drugs such as rifampicin or line­zolid work well against ADEP-​​resistant cells, pro­viding a unique cock­tail that not only kills per­sis­ters but also elim­i­nates ADEP-​​resistant mutant bacteria.

Dr. Richard Novick of New York University’s Lan­gone Med­ical Center and a leader in the field said the research is a “bril­liant out­growth of Kim Lewis’ pio­neering work on bac­te­rial per­sis­ters and rep­re­sents a highly cre­ative ini­tia­tive in this era of dimin­ishing antibi­otic utility.”

While ADEP tar­gets MRSA, Lewis’ team believes sim­ilar com­pounds will be useful for treating other infec­tions as well as any other dis­ease model that can only be over­come by elim­i­nating a pop­u­la­tion of rogue cells, including can­cerous tumors. They are pur­suing sev­eral already.

This entry was posted in Science & Technology and tagged antibiotic-resistance, biology, chronic infection, College of Science, microbiology, MRSA, persister cells, research.

Kara Shemin | EurekAlert!
Further information:
http://www.neu.edu

More articles from Health and Medicine:

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

nachricht Second cause of hidden hearing loss identified
20.02.2017 | Michigan Medicine - University of Michigan

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>