Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Researchers Discover Why Steroid Treatment for COPD Is Ineffective

Findings Offer Potential New Drug Target for COPD Therapy

Chronic obstructive pulmonary disease (COPD) leads to persistent inflammation of the airways and is typically managed with corticosteroids, a class of anti-inflammatory medication.

However, corticosteroids do not improve survival nor alter the progression of COPD and may reduce lung symptoms as little as 20 percent. A new study led by researchers at the Johns Hopkins Bloomberg School of Public Health, found why corticosteroids do not work well for COPD patients and how additional treatment with sulforaphane—an ingredient of broccoli and other vegetables—can improve the effectiveness of corticosteroids. The study was published online October 17, 2011, in advance of print in the Journal of Clinical Investigation.

COPD is a major public health problem for both the developed and the developing world, and is most often caused by cigarette smoking or exposure to pollutants from combustion. Characterized by chronic bronchitis and emphysema, COPD is the third leading cause of death in the U.S. and affects 24 million Americans and 210 million people worldwide.

Histone deacetylase 2 (HDAC2) is critical component in a chain of reactions that enable corticosteroids to reduce inflammation. However, HDAC2 is substantially reduced in the lung tissue of individuals with COPD. In the study, Johns Hopkins researchers found that S-nitrosylation causes HDAC2 dysfunction and leads to corticosteroid insensitivity in the alveolar macrophages of the lungs of individuals with COPD. S-nitrosylation of HDAC2 occurs from exposure to cigarette smoke, a primary cause of COPD.

“This study provides the mechanism of exaggerated inflammation observed in COPD patients during exacerbations, which has been a barrier to developing effective therapy,” said Rajesh Thimmulappa, PhD, co-author of the study and an assistant scientist in the Bloomberg School’s Department of Environmental Health Sciences.

Furthermore, the research team found that treatment with sulforaphane restored HDAC2 activity and corticosteroid sensitivity. Previous studies by the research team showed sulforaphane activates the Nrf2 pathway (nuclear factor erythroid 2–related factor 2) and it is being tested in clinical trial for patients with COPD.

“Restoring corticosteroid sensitivity in patients with COPD by targeting the Nrf2 pathway holds promise for effectively treating exacerbations,” said Shyam Biswal, PhD, senior author of the study and professor in the Bloomberg School’s Department of Environmental Health Sciences and Division of Pulmonary and Critical Care Medicine at the Johns Hopkins School of Medicine.

Authors of “Denitrosylation of HDAC2 by Targeting Nrf2 Restores Glucocorticosteriod Sensitivity in Macrophages from COPD Patient” are Deepti Malhotra, Rajesh Thimmulappa, Nicolas Mercado, Kazuhiro Ito, Ponvijay Kombairaju, Sarvesh Kumar, Jinfang Ma, David Feller-Kopman, Robert Wise, Peter Barnes and Shyam Biswal.

Funding for the research was provided by the National Institutes of Health, the National Heart, Lung and Blood Institute, the Flight Attendants Medical Research Institute, the National Cancer Institute, the National Institute on Environmental Health and the Grace Anne Dorney fund for tobacco-related disease research.

Biswal, Thimmulappa, and the Johns Hopkins University hold intellectual property on the development of Nrf2-based therapeutics in COPD, and they have equity in Cureveda LLC, which was co-founded by Biswal and Thimmulappa, and where they serve as scientific consultants. These potential individual and institutional conflicts of interest have been reviewed and managed by the Johns Hopkins Bloomberg School of Public Health. Under a licensing agreement between Brassica Protection Products and the Johns Hopkins University, the University is entitled to royalty received on sales of products/technology described in this article. The University owns Brassica Protection Products stock, which is subject to certain restrictions under University policy. The terms of this arrangement are being managed by the Johns Hopkins University in accordance with its conflict of interest policies. No other competing interest were declared.

Media contact, Johns Hopkins Bloomberg School of Public Health : Tim Parsons, director of Public Affairs, at 410-955-7619 or

Tim Parsons | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Inflammation Triggers Unsustainable Immune Response to Chronic Viral Infection
24.10.2016 | Universität Basel

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>