Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers discover process that turns 'good cholesterol' bad

27.01.2014
Dysfunctional version of normally protective protein that makes HDL found to promote inflammation and coronary artery disease

Cleveland Clinic researchers have discovered the process by which high-density lipoprotein (HDL) – the so-called "good cholesterol" – becomes dysfunctional, loses its cardio-protective properties, and instead promotes inflammation and atherosclerosis, or the clogging and hardening of the arteries. Their research was published online today in the journal Nature Medicine.

The beneficial and cardio-protective properties of HDL have been studied and reported extensively, yet all clinical trials of pharmaceuticals designed to raise HDL levels have so far failed to show that they significantly improve cardiovascular health. This disconnect, as well as recent research showing that a protein abundant in HDL is present in an oxidized form in diseased artery walls, spurred the research team – led by Stanley Hazen, M.D., Ph.D., Vice Chair of Translational Research for the Lerner Research Institute and section head of Preventive Cardiology & Rehabilitation in the Miller Family Heart and Vascular Institute at Cleveland Clinic – to study the process by which HDL becomes dysfunctional.

Apolipoprotein A1 (apoA1) is the primary protein present in HDL, providing the structure of the molecule that allows it to transfer cholesterol out of the artery wall and deliver it to the liver, from which cholesterol is excreted. It's apoA1 that normally gives HDL its cardio-protective qualities, but Dr. Hazen and his colleagues have discovered that in the artery wall during atherosclerosis, a large proportion of apoA1 becomes oxidized and no longer contributes to cardiovascular health, but rather, contributes to the development of coronary artery disease.

Over the course of more than five years, Dr. Hazen and his colleagues developed a method for identifying dysfunctional apoA1/HDL and discovered the process by which it is oxidized and turned dysfunctional in the artery wall. They then tested the blood of 627 Cleveland Clinic cardiology patients for the dysfunctional HDL and found that higher levels raised the patient's risk for cardiovascular disease.

"Identifying the structure of dysfunctional apoA1 and the process by which it becomes disease-promoting instead of disease-preventing is the first step in creating new tests and treatments for cardiovascular disease," said Dr. Hazen. "Now that we know what this dysfunctional protein looks like, we are developing a clinical test to measure its levels in the bloodstream, which will be a valuable tool for both assessing cardiovascular disease risk in patients and for guiding development of HDL-targeted therapies to prevent disease."

The research also points toward new therapeutic targets for pharmaceuticals, such as those designed to prevent the formation of dysfunctional HDL and the development or progression of atherosclerosis.

For more information on Dr. Hazen's research, visit http://www.lerner.ccf.org/cellbio/hazen.

This research was supported by the National Institutes of Health (grants P01HL098055 and HL119962).

About Cleveland Clinic

Cleveland Clinic is a nonprofit multispecialty academic medical center that integrates clinical and hospital care with research and education. Located in Cleveland, Ohio, it was founded in 1921 by four renowned physicians with a vision of providing outstanding patient care based upon the principles of cooperation, compassion and innovation. Cleveland Clinic has pioneered many medical breakthroughs, including coronary artery bypass surgery and the first face transplant in the United States. U.S.News & World Report consistently names Cleveland Clinic as one of the nation's best hospitals in its annual "America's Best Hospitals" survey. More than 3,000 full-time salaried physicians and researchers and 11,000 nurses represent 120 medical specialties and subspecialties. The Cleveland Clinic health system includes a main campus near downtown Cleveland, eight community hospitals, more than 75 Northern Ohio outpatient locations, including 16 full-service Family Health Centers, Cleveland Clinic Florida, the Lou Ruvo Center for Brain Health in Las Vegas, Cleveland Clinic Canada, and, currently under construction, Cleveland Clinic Abu Dhabi. In 2012, there were 5.1 million outpatient visits throughout the Cleveland Clinic health system and 157,000 hospital admissions. Patients came for treatment from every state and from more than 130 countries. Visit us at http://www.clevelandclinic.org. Follow us at http://www.twitter.com/ClevelandClinic.
Contact: Wyatt DuBois, 216.445.9946, duboisw@ccf.org
Laura Ambro, 216.636.5876, ambrol@ccf.org
Tora Vinci, 216.444.2412, vinciv@ccf.org

Laura Ambro | EurekAlert!
Further information:
http://www.ccf.org

More articles from Health and Medicine:

nachricht Monitoring the heart's mitochondria to predict cardiac arrest?
21.09.2017 | Boston Children's Hospital

nachricht Highly precise wiring in the Cerebral Cortex
21.09.2017 | Max-Planck-Institut für Hirnforschung

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Comet or asteroid? Hubble discovers that a unique object is a binary

21.09.2017 | Physics and Astronomy

Cnidarians remotely control bacteria

21.09.2017 | Life Sciences

Monitoring the heart's mitochondria to predict cardiac arrest?

21.09.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>