Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers discover process that turns 'good cholesterol' bad

27.01.2014
Dysfunctional version of normally protective protein that makes HDL found to promote inflammation and coronary artery disease

Cleveland Clinic researchers have discovered the process by which high-density lipoprotein (HDL) – the so-called "good cholesterol" – becomes dysfunctional, loses its cardio-protective properties, and instead promotes inflammation and atherosclerosis, or the clogging and hardening of the arteries. Their research was published online today in the journal Nature Medicine.

The beneficial and cardio-protective properties of HDL have been studied and reported extensively, yet all clinical trials of pharmaceuticals designed to raise HDL levels have so far failed to show that they significantly improve cardiovascular health. This disconnect, as well as recent research showing that a protein abundant in HDL is present in an oxidized form in diseased artery walls, spurred the research team – led by Stanley Hazen, M.D., Ph.D., Vice Chair of Translational Research for the Lerner Research Institute and section head of Preventive Cardiology & Rehabilitation in the Miller Family Heart and Vascular Institute at Cleveland Clinic – to study the process by which HDL becomes dysfunctional.

Apolipoprotein A1 (apoA1) is the primary protein present in HDL, providing the structure of the molecule that allows it to transfer cholesterol out of the artery wall and deliver it to the liver, from which cholesterol is excreted. It's apoA1 that normally gives HDL its cardio-protective qualities, but Dr. Hazen and his colleagues have discovered that in the artery wall during atherosclerosis, a large proportion of apoA1 becomes oxidized and no longer contributes to cardiovascular health, but rather, contributes to the development of coronary artery disease.

Over the course of more than five years, Dr. Hazen and his colleagues developed a method for identifying dysfunctional apoA1/HDL and discovered the process by which it is oxidized and turned dysfunctional in the artery wall. They then tested the blood of 627 Cleveland Clinic cardiology patients for the dysfunctional HDL and found that higher levels raised the patient's risk for cardiovascular disease.

"Identifying the structure of dysfunctional apoA1 and the process by which it becomes disease-promoting instead of disease-preventing is the first step in creating new tests and treatments for cardiovascular disease," said Dr. Hazen. "Now that we know what this dysfunctional protein looks like, we are developing a clinical test to measure its levels in the bloodstream, which will be a valuable tool for both assessing cardiovascular disease risk in patients and for guiding development of HDL-targeted therapies to prevent disease."

The research also points toward new therapeutic targets for pharmaceuticals, such as those designed to prevent the formation of dysfunctional HDL and the development or progression of atherosclerosis.

For more information on Dr. Hazen's research, visit http://www.lerner.ccf.org/cellbio/hazen.

This research was supported by the National Institutes of Health (grants P01HL098055 and HL119962).

About Cleveland Clinic

Cleveland Clinic is a nonprofit multispecialty academic medical center that integrates clinical and hospital care with research and education. Located in Cleveland, Ohio, it was founded in 1921 by four renowned physicians with a vision of providing outstanding patient care based upon the principles of cooperation, compassion and innovation. Cleveland Clinic has pioneered many medical breakthroughs, including coronary artery bypass surgery and the first face transplant in the United States. U.S.News & World Report consistently names Cleveland Clinic as one of the nation's best hospitals in its annual "America's Best Hospitals" survey. More than 3,000 full-time salaried physicians and researchers and 11,000 nurses represent 120 medical specialties and subspecialties. The Cleveland Clinic health system includes a main campus near downtown Cleveland, eight community hospitals, more than 75 Northern Ohio outpatient locations, including 16 full-service Family Health Centers, Cleveland Clinic Florida, the Lou Ruvo Center for Brain Health in Las Vegas, Cleveland Clinic Canada, and, currently under construction, Cleveland Clinic Abu Dhabi. In 2012, there were 5.1 million outpatient visits throughout the Cleveland Clinic health system and 157,000 hospital admissions. Patients came for treatment from every state and from more than 130 countries. Visit us at http://www.clevelandclinic.org. Follow us at http://www.twitter.com/ClevelandClinic.
Contact: Wyatt DuBois, 216.445.9946, duboisw@ccf.org
Laura Ambro, 216.636.5876, ambrol@ccf.org
Tora Vinci, 216.444.2412, vinciv@ccf.org

Laura Ambro | EurekAlert!
Further information:
http://www.ccf.org

More articles from Health and Medicine:

nachricht Exploring a new frontier of cyber-physical systems: The human body
18.05.2015 | National Science Foundation

nachricht Soft-tissue engineering for hard-working cartilage
18.05.2015 | Technische Universitaet Muenchen

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Basel Physicists Develop Efficient Method of Signal Transmission from Nanocomponents

Physicists have developed an innovative method that could enable the efficient use of nanocomponents in electronic circuits. To achieve this, they have developed a layout in which a nanocomponent is connected to two electrical conductors, which uncouple the electrical signal in a highly efficient manner. The scientists at the Department of Physics and the Swiss Nanoscience Institute at the University of Basel have published their results in the scientific journal “Nature Communications” together with their colleagues from ETH Zurich.

Electronic components are becoming smaller and smaller. Components measuring just a few nanometers – the size of around ten atoms – are already being produced...

Im Focus: IoT-based Advanced Automobile Parking Navigation System

Development and implementation of an advanced automobile parking navigation platform for parking services

To fulfill the requirements of the industry, PolyU researchers developed the Advanced Automobile Parking Navigation Platform, which includes smart devices,...

Im Focus: First electrical car ferry in the world in operation in Norway now

  • Siemens delivers electric propulsion system and charging stations with lithium-ion batteries charged from hydro power
  • Ferry only uses 150 kilowatt hours (kWh) per route and reduces cost of fuel by 60 percent
  • Milestone on the road to operating emission-free ferries

The world's first electrical car and passenger ferry powered by batteries has entered service in Norway. The ferry only uses 150 kWh per route, which...

Im Focus: Into the ice – RV Polarstern opens the arctic season by setting course for Spitsbergen

On Tuesday, 19 May 2015 the research icebreaker Polarstern will leave its home port in Bremerhaven, setting a course for the Arctic. Led by Dr Ilka Peeken from the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) a team of 53 researchers from 11 countries will investigate the effects of climate change in the Arctic, from the surface ice floes down to the seafloor.

RV Polarstern will enter the sea-ice zone north of Spitsbergen. Covering two shallow regions on their way to deeper waters, the scientists on board will focus...

Im Focus: Gel filled with nanosponges cleans up MRSA infections

Nanoengineers at the University of California, San Diego developed a gel filled with toxin-absorbing nanosponges that could lead to an effective treatment for skin and wound infections caused by MRSA (methicillin-resistant Staphylococcus aureus), an antibiotic-resistant bacteria. This "nanosponge-hydrogel" minimized the growth of skin lesions on mice infected with MRSA - without the use of antibiotics. The researchers recently published their findings online in Advanced Materials.

To make the nanosponge-hydrogel, the team mixed nanosponges, which are nanoparticles that absorb dangerous toxins produced by MRSA, E. coli and other...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International symposium: trends in spatial analysis and modelling for a more sustainable land use

20.05.2015 | Event News

15th conference of the International Association of Colloid and Interface Scientists

18.05.2015 | Event News

EHFG 2015: Securing health in Europe. Balancing priorities, sharing responsibilities

12.05.2015 | Event News

 
Latest News

Analytical lamps monitor air pollution in cities

26.05.2015 | Ecology, The Environment and Conservation

DNA double helix does double duty in assembling arrays of nanoparticles

26.05.2015 | Life Sciences

Turn That Defect Upside Down

26.05.2015 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>