Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers discover precisely how thalidomide causes birth defects

20.04.2011
New research in the FASEB Journal details the first evidence that breakdown products of thalidomide produce the specific, toxic effects of thalidomide in embryos

Thalidomide may have been withdrawn in the early 1960s for use by pregnant women, but its dramatic effects remain memorable half a century later. Now, researchers have taken a major step toward understanding exactly how thalidomide causes the birth defects.

This is important as thalidomide is still used to treat diseases like multiple myeloma and leprosy, and is being tested for cancers and autoimmune disorders. This discovery was recently published online in the FASEB Journal (http://www.fasebj.org).

"The ability of thalidomide breakdown products to cause birth defects complicates our attempts to understand how the birth defects arise and the search for safer alternatives to thalidomide, although the rabbit embryo culture model will facilitate both processes," said Peter G. Wells, Pharm.D., a researcher involved in the work from the Department of Pharmacology and Toxicology at the University of Toronto in Ontario, Canada.

Specifically, Wells and colleagues found that birth defects result from not only thalidomide, but also from the compounds that it breaks down to in the body, which last up to 40 times longer in the body than thalidomide itself. These compounds ultimately lead to the production of highly toxic forms of oxygen, called "reactive oxygen species," (ROS) including hydrogen peroxide and free radicals that alter disrupt normal embryonic development, causing birth defects.

To make this discovery, the scientists developed a new animal model for fetal thalidomide exposure by extracting rabbit embryos from pregnant mothers during the first trimester of pregnancy, when the limbs and other structures are developing. Then they cultured the embryos in dishes for one to two days, with or without exposure to thalidomide or one of its breakdown products. Front and hind limb deformities as well as other abnormalities were observed only in the embryos exposed to thalidomide or one of its products. DNA damage caused by ROS and free radicals was similarly increased only in the exposed embryos.

"Administering thalidomide to pregnant women remains was of the biggest mistakes made in modern medicine," said Gerald Weissmann, M.D., Editor-in-Chief of the FASEB Journal, "Yet we now use thalidomide and related products as effective therapies for serious diseases. This research not only explains what caused all that misery years ago, but promises to help us find safer alternatives to thalidomide in the future."

Receive monthly highlights from the FASEB Journal by signing up at http://www.faseb.org/fjupdate.aspx or you can like the Federation of American Societies for Experimental Biology on Facebook. The FASEB Journal (http://www.fasebj.org) is published by the Federation of the American Societies for Experimental Biology (FASEB) and celebrates its 25th anniversary in 2011. Over the past quarter century, the journal has been recognized by the Special Libraries Association as one of the top 100 most influential biomedical journals of the past century and is the most cited biology journal worldwide according to the Institute for Scientific Information.

FASEB comprises 23 societies with more than 100,000 members, making it the largest coalition of biomedical research associations in the United States. FASEB enhances the ability of scientists and engineers to improve—through their research—the health, well-being and productivity of all people. FASEB's mission is to advance health and welfare by promoting progress and education in biological and biomedical sciences through service to our member societies and collaborative advocacy.

Details: Crystal J. J. Lee, Luisa L. Gonçalves, and Peter G. Wells. Embryopathic effects of thalidomide and its hydrolysis products in rabbit embryo culture: evidence for a prostaglandin H synthase (PHS)-dependent, reactive oxygen species (ROS)-mediated mechanism. FASEB J. doi:10.1096/fj.10-178814 ; http://www.fasebj.org/content/early/2011/04/15/fj.10-178814.abstract

Cody Mooneyhan | EurekAlert!
Further information:
http://www.faseb.org

More articles from Health and Medicine:

nachricht New vaccine production could improve flu shot accuracy
25.07.2017 | Duke University

nachricht Chances to treat childhood dementia
24.07.2017 | Julius-Maximilians-Universität Würzburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA mission surfs through waves in space to understand space weather

25.07.2017 | Physics and Astronomy

Strength of tectonic plates may explain shape of the Tibetan Plateau, study finds

25.07.2017 | Earth Sciences

The dense vessel network regulates formation of thrombocytes in the bone marrow

25.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>