Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers discover precisely how thalidomide causes birth defects

20.04.2011
New research in the FASEB Journal details the first evidence that breakdown products of thalidomide produce the specific, toxic effects of thalidomide in embryos

Thalidomide may have been withdrawn in the early 1960s for use by pregnant women, but its dramatic effects remain memorable half a century later. Now, researchers have taken a major step toward understanding exactly how thalidomide causes the birth defects.

This is important as thalidomide is still used to treat diseases like multiple myeloma and leprosy, and is being tested for cancers and autoimmune disorders. This discovery was recently published online in the FASEB Journal (http://www.fasebj.org).

"The ability of thalidomide breakdown products to cause birth defects complicates our attempts to understand how the birth defects arise and the search for safer alternatives to thalidomide, although the rabbit embryo culture model will facilitate both processes," said Peter G. Wells, Pharm.D., a researcher involved in the work from the Department of Pharmacology and Toxicology at the University of Toronto in Ontario, Canada.

Specifically, Wells and colleagues found that birth defects result from not only thalidomide, but also from the compounds that it breaks down to in the body, which last up to 40 times longer in the body than thalidomide itself. These compounds ultimately lead to the production of highly toxic forms of oxygen, called "reactive oxygen species," (ROS) including hydrogen peroxide and free radicals that alter disrupt normal embryonic development, causing birth defects.

To make this discovery, the scientists developed a new animal model for fetal thalidomide exposure by extracting rabbit embryos from pregnant mothers during the first trimester of pregnancy, when the limbs and other structures are developing. Then they cultured the embryos in dishes for one to two days, with or without exposure to thalidomide or one of its breakdown products. Front and hind limb deformities as well as other abnormalities were observed only in the embryos exposed to thalidomide or one of its products. DNA damage caused by ROS and free radicals was similarly increased only in the exposed embryos.

"Administering thalidomide to pregnant women remains was of the biggest mistakes made in modern medicine," said Gerald Weissmann, M.D., Editor-in-Chief of the FASEB Journal, "Yet we now use thalidomide and related products as effective therapies for serious diseases. This research not only explains what caused all that misery years ago, but promises to help us find safer alternatives to thalidomide in the future."

Receive monthly highlights from the FASEB Journal by signing up at http://www.faseb.org/fjupdate.aspx or you can like the Federation of American Societies for Experimental Biology on Facebook. The FASEB Journal (http://www.fasebj.org) is published by the Federation of the American Societies for Experimental Biology (FASEB) and celebrates its 25th anniversary in 2011. Over the past quarter century, the journal has been recognized by the Special Libraries Association as one of the top 100 most influential biomedical journals of the past century and is the most cited biology journal worldwide according to the Institute for Scientific Information.

FASEB comprises 23 societies with more than 100,000 members, making it the largest coalition of biomedical research associations in the United States. FASEB enhances the ability of scientists and engineers to improve—through their research—the health, well-being and productivity of all people. FASEB's mission is to advance health and welfare by promoting progress and education in biological and biomedical sciences through service to our member societies and collaborative advocacy.

Details: Crystal J. J. Lee, Luisa L. Gonçalves, and Peter G. Wells. Embryopathic effects of thalidomide and its hydrolysis products in rabbit embryo culture: evidence for a prostaglandin H synthase (PHS)-dependent, reactive oxygen species (ROS)-mediated mechanism. FASEB J. doi:10.1096/fj.10-178814 ; http://www.fasebj.org/content/early/2011/04/15/fj.10-178814.abstract

Cody Mooneyhan | EurekAlert!
Further information:
http://www.faseb.org

More articles from Health and Medicine:

nachricht Minimising risks of transplants
22.02.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht FAU researchers demonstrate that an oxygen sensor in the body reduces inflammation
22.02.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Stiffness matters

22.02.2018 | Life Sciences

Magnetic field traces gas and dust swirling around supermassive black hole

22.02.2018 | Physics and Astronomy

First evidence of surprising ocean warming around Galápagos corals

22.02.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>