Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers discover normal version of molecular pathway affected in poor-prognosis childhood leukemia

07.06.2013
Through genetic engineering of laboratory models, researchers at Dartmouth-Hitchcock Norris Cotton Cancer Center have uncovered a vulnerability in the way cancer cells diverge from normal regenerating cells that may help treat children with leukemia as reported in the journal PNAS on June 3, 2013.
Dartmouth researchers are trying to understand the key pathways that distinguish how a normal blood cell grows and divides compared to the altered growth that occurs in leukemia. In addition to the treatment of leukemia, the work has relevance for expanding umbilical cord blood or bone marrow stem cells for transplantation.

Leukemia often occurs due to chromosomal translocations, which are broken chromosomes that cause blood cells to grow uncontrollably. One gene that is involved in chromosomal translocations found at high frequency in childhood leukemia is the MLL1 (Mixed Lineage Leukemia 1) gene. Conventional chemotherapy is very ineffective at curing patients with this translocation, in contrast to other types of childhood leukemia, which are relatively curable.

Using genetic engineering, the researchers generated a mouse model to discover genes that are regulated by MLL1 in hematopoietic stem cells, the cells that give rise to all white and red blood cell types. In the course of these studies, they identified several unique properties of the normal MLL1 pathway in hematopoietic stem cells that may be exploited to better treat leukemia harboring MLL1 translocations.

"We discovered that many genes that depend upon the normal MLL1 protein are involved in maintaining hematopoietic stem cells, thus manipulating this pathway could be a way to expand cells from normal bone marrow or umbilical cord blood donors to improve transplantation of these cell types, which is a procedure used to treat certain chemotherapy-resistant cancers," said Patricia Ernst, PhD, co-director Cancer Mechanisms, Dartmouth-Hitchcock Norris Cotton Cancer Center, associate professor of Genetics and of Microbiology and Immunology at the Geisel School of Medicine at Dartmouth, Hanover, NH.

As principle investigator, Ernst and her team set out to discover the genetic pathways controlled by the normal form of the MLL1 protein and leukemogenic MLL1 fusion proteins specifically in hematopoietic stem cells (HSCs). Delineation of these pathways will facilitate research by her group and others aimed at developing strategies to kill leukemia cells without harming HSCs, which are often profoundly affected by current chemotherapeutic regimens. In performing this research, they also discovered a new molecular pathway that controls normal HSC biology.

"We demonstrate in this study, that some direct MLL1 target genes in HSCs are affected by Menin loss (a protein involved in the inherited disorder, Multiple Endocrine Neoplasia), and some are not," said Ernst. "This is a fundamentally important observation that demonstrates this category of chromatin modifiers utilizes different protein complexes/mechanisms to target different classes of genes in different cell types."

Ernst points out that this highly desirable outcome that would not have been predicted for this targeted therapy and may illustrate that drugs blocking the interaction of these two proteins (currently under development by other groups) leave normal hematopoiesis intact. She is working on follow-up studies of this finding.

Research funded by NIH HL090036 and RR16437 as well as additional grants from American Cancer Society, Gabrielle’s Angel Foundation for Cancer Research, Lady Tata Memorial Trust, and the Lauri Strauss Leukemia Foundation.

About Norris Cotton Cancer Center at Dartmouth-Hitchcock

Norris Cotton Cancer Center combines advanced cancer research at Dartmouth College and the Geisel School of Medicine at Dartmouth College with patient-centered cancer care provided at Dartmouth-Hitchcock Medical Center, at Dartmouth-Hitchcock regional locations in Manchester, Nashua, and Keene, NH, and St. Johnsbury, VT, and at 12 partner hospitals throughout New Hampshire and Vermont. It is one of 41 centers nationwide to earn the National Cancer Institute's "Comprehensive Cancer Center" designation. Learn more about Norris Cotton Cancer Center research, programs, and clinical trials online at cancer.dartmouth.edu.

For more information contact Donna Dubuc at (603) 653-3615.

Donna Dubuc | EurekAlert!
Further information:
http://www.hitchcock.org

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>