Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Discover Molecule That Drives Aggressive Breast Cancer

01.07.2013
Recent studies by researchers at Thomas Jefferson University’s Kimmel Cancer Center have shown a gene known to coordinate initial development of the eye (EYA1) is a powerful breast tumor promoter in mice. The gene EYA1 was also shown to be overexpressed in a genetic breast cancer subtype called luminal B.

The scientists found that excess activity of this gene —EYA1 — also enhances development of breast cancer stem cells that promote resistance to cancer therapy, recurrence, and poor survival.

Because EYA1 is an enzyme, the scientists are now working to identify a natural compound that could shut down EYA1 activity, says Richard Pestell, M.D., Ph.D., Director of Kimmel Cancer Center.

“It was known that EYA1 is over-expressed in some breast cancers, but no one knew what that meant,” he says. “Our studies have shown the enzyme drives luminal B breast tumor growth in animals and the enzyme activity is required for tumor growth.”

In a mouse model of aggressive breast cancer, the research team targeted a single amino acid on the EYA1 phosphatase activity. They found that inactivating the phosphatase activity of EYA1 stopped aggressive human tumors from growing.

“We are excited about the potential of drug treatment, because it is much easier to develop a drug that targets a phosphatase enzyme like EYA1, than it is to target a gene directly,” he says.

Tracing how EYA1 leads to poor outcomes

The study, which was published in the May 1 issue of Cancer Research, examined 2,154 breast cancer samples for the presence of EYA1. The researchers then linked those findings to patient outcomes. They found a direct relationship between increased level of EYA1 and cyclin D1 to poor survival.

They then chose one form of breast cancer —luminal B — and traced the bimolecular pathway of how EYA1 with cyclin D1 increases cancer aggressiveness. Luminal B breast cancer, one of five different breast cancer subtypes, is a hormone receptor-positive form that accounts for about 20 percent of human breast cancer. It is more aggressive than luminal A tumors, a hormone receptor-positive cancer that is the most common form of breast cancer.

Their work delineated a string of genes and proteins that are affected by EYA1, and they also discovered that EYA1 pushes an increase in formation of mammospheres, which are a measure of breast cancer stem cells.

“Within every breast cancer are breast cancer stem cells, which give rise to anti-cancer therapy resistance, recurrence and metastases,” Dr. Pestell says. “We demonstrated in laboratory experiments that EYA1 expression increase the number of mammospheres and other markers of breast cancer stem cells.”

“As the EYA1 phosphatase activity drove breast cancer stem cell expansion, this activity may contribute to worse survival,” he says.

This study was supported in part by the NIH grants RO1CA132115, R01CA70896, R01CA75503, R01CA86072 and P30CA56036 (RGP), a grant from the Breast Cancer Research Foundation (RGP), a grant for Dr. Ralph and Marian C. Falk Medical Research Trust (RGP), Margaret Q. Landenberger Research Foundation, the Department of Defense Concept Award W81XWH-11-1-0303.

Study co-authors are, from Kimmel Cancer Center: first author Kongming Wu, Zhaoming Li, Shaoxin Cai, Lifeng Tian, Ke Chen, Jing Wang and Adam Ertel; Junbo Hu, from Huazhong University of Science and Technology, China; and Ye Sun, and Xue Li from Boston Children's Hospital.

Thomas Jefferson University (TJU), the largest freestanding academic medical center in Philadelphia, is nationally renowned for medical and health sciences education and innovative research. Founded in 1824, TJU includes Jefferson Medical College (JMC), one of the largest private medical schools in the country and ranked among the nation’s best medical schools by U.S. News & World Report, and the Jefferson Schools of Nursing, Pharmacy, Health Professions, Population Health and the Graduate School of Biomedical Sciences. Jefferson University Physicians is TJU’s multi-specialty physician practice consisting of the full-time faculty of JMC. Thomas Jefferson University partners with its clinical affiliate, Thomas Jefferson University Hospitals.

Jackie Kozloski | Newswise
Further information:
http://www.jefferson.edu

More articles from Health and Medicine:

nachricht NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures
17.11.2017 | National Institute of Standards and Technology (NIST)

nachricht High speed video recording precisely measures blood cell velocity
15.11.2017 | ITMO University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>