Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Discover Molecule That Drives Aggressive Breast Cancer

01.07.2013
Recent studies by researchers at Thomas Jefferson University’s Kimmel Cancer Center have shown a gene known to coordinate initial development of the eye (EYA1) is a powerful breast tumor promoter in mice. The gene EYA1 was also shown to be overexpressed in a genetic breast cancer subtype called luminal B.

The scientists found that excess activity of this gene —EYA1 — also enhances development of breast cancer stem cells that promote resistance to cancer therapy, recurrence, and poor survival.

Because EYA1 is an enzyme, the scientists are now working to identify a natural compound that could shut down EYA1 activity, says Richard Pestell, M.D., Ph.D., Director of Kimmel Cancer Center.

“It was known that EYA1 is over-expressed in some breast cancers, but no one knew what that meant,” he says. “Our studies have shown the enzyme drives luminal B breast tumor growth in animals and the enzyme activity is required for tumor growth.”

In a mouse model of aggressive breast cancer, the research team targeted a single amino acid on the EYA1 phosphatase activity. They found that inactivating the phosphatase activity of EYA1 stopped aggressive human tumors from growing.

“We are excited about the potential of drug treatment, because it is much easier to develop a drug that targets a phosphatase enzyme like EYA1, than it is to target a gene directly,” he says.

Tracing how EYA1 leads to poor outcomes

The study, which was published in the May 1 issue of Cancer Research, examined 2,154 breast cancer samples for the presence of EYA1. The researchers then linked those findings to patient outcomes. They found a direct relationship between increased level of EYA1 and cyclin D1 to poor survival.

They then chose one form of breast cancer —luminal B — and traced the bimolecular pathway of how EYA1 with cyclin D1 increases cancer aggressiveness. Luminal B breast cancer, one of five different breast cancer subtypes, is a hormone receptor-positive form that accounts for about 20 percent of human breast cancer. It is more aggressive than luminal A tumors, a hormone receptor-positive cancer that is the most common form of breast cancer.

Their work delineated a string of genes and proteins that are affected by EYA1, and they also discovered that EYA1 pushes an increase in formation of mammospheres, which are a measure of breast cancer stem cells.

“Within every breast cancer are breast cancer stem cells, which give rise to anti-cancer therapy resistance, recurrence and metastases,” Dr. Pestell says. “We demonstrated in laboratory experiments that EYA1 expression increase the number of mammospheres and other markers of breast cancer stem cells.”

“As the EYA1 phosphatase activity drove breast cancer stem cell expansion, this activity may contribute to worse survival,” he says.

This study was supported in part by the NIH grants RO1CA132115, R01CA70896, R01CA75503, R01CA86072 and P30CA56036 (RGP), a grant from the Breast Cancer Research Foundation (RGP), a grant for Dr. Ralph and Marian C. Falk Medical Research Trust (RGP), Margaret Q. Landenberger Research Foundation, the Department of Defense Concept Award W81XWH-11-1-0303.

Study co-authors are, from Kimmel Cancer Center: first author Kongming Wu, Zhaoming Li, Shaoxin Cai, Lifeng Tian, Ke Chen, Jing Wang and Adam Ertel; Junbo Hu, from Huazhong University of Science and Technology, China; and Ye Sun, and Xue Li from Boston Children's Hospital.

Thomas Jefferson University (TJU), the largest freestanding academic medical center in Philadelphia, is nationally renowned for medical and health sciences education and innovative research. Founded in 1824, TJU includes Jefferson Medical College (JMC), one of the largest private medical schools in the country and ranked among the nation’s best medical schools by U.S. News & World Report, and the Jefferson Schools of Nursing, Pharmacy, Health Professions, Population Health and the Graduate School of Biomedical Sciences. Jefferson University Physicians is TJU’s multi-specialty physician practice consisting of the full-time faculty of JMC. Thomas Jefferson University partners with its clinical affiliate, Thomas Jefferson University Hospitals.

Jackie Kozloski | Newswise
Further information:
http://www.jefferson.edu

More articles from Health and Medicine:

nachricht Penn vet research identifies new target for taming Ebola
12.01.2017 | University of Pennsylvania

nachricht The strange double life of Dab2
10.01.2017 | University of Miami Miller School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Satellite-based Laser Measurement Technology against Climate Change

17.01.2017 | Machine Engineering

Studying fundamental particles in materials

17.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>