Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Discover Molecule That Drives Aggressive Breast Cancer

01.07.2013
Recent studies by researchers at Thomas Jefferson University’s Kimmel Cancer Center have shown a gene known to coordinate initial development of the eye (EYA1) is a powerful breast tumor promoter in mice. The gene EYA1 was also shown to be overexpressed in a genetic breast cancer subtype called luminal B.

The scientists found that excess activity of this gene —EYA1 — also enhances development of breast cancer stem cells that promote resistance to cancer therapy, recurrence, and poor survival.

Because EYA1 is an enzyme, the scientists are now working to identify a natural compound that could shut down EYA1 activity, says Richard Pestell, M.D., Ph.D., Director of Kimmel Cancer Center.

“It was known that EYA1 is over-expressed in some breast cancers, but no one knew what that meant,” he says. “Our studies have shown the enzyme drives luminal B breast tumor growth in animals and the enzyme activity is required for tumor growth.”

In a mouse model of aggressive breast cancer, the research team targeted a single amino acid on the EYA1 phosphatase activity. They found that inactivating the phosphatase activity of EYA1 stopped aggressive human tumors from growing.

“We are excited about the potential of drug treatment, because it is much easier to develop a drug that targets a phosphatase enzyme like EYA1, than it is to target a gene directly,” he says.

Tracing how EYA1 leads to poor outcomes

The study, which was published in the May 1 issue of Cancer Research, examined 2,154 breast cancer samples for the presence of EYA1. The researchers then linked those findings to patient outcomes. They found a direct relationship between increased level of EYA1 and cyclin D1 to poor survival.

They then chose one form of breast cancer —luminal B — and traced the bimolecular pathway of how EYA1 with cyclin D1 increases cancer aggressiveness. Luminal B breast cancer, one of five different breast cancer subtypes, is a hormone receptor-positive form that accounts for about 20 percent of human breast cancer. It is more aggressive than luminal A tumors, a hormone receptor-positive cancer that is the most common form of breast cancer.

Their work delineated a string of genes and proteins that are affected by EYA1, and they also discovered that EYA1 pushes an increase in formation of mammospheres, which are a measure of breast cancer stem cells.

“Within every breast cancer are breast cancer stem cells, which give rise to anti-cancer therapy resistance, recurrence and metastases,” Dr. Pestell says. “We demonstrated in laboratory experiments that EYA1 expression increase the number of mammospheres and other markers of breast cancer stem cells.”

“As the EYA1 phosphatase activity drove breast cancer stem cell expansion, this activity may contribute to worse survival,” he says.

This study was supported in part by the NIH grants RO1CA132115, R01CA70896, R01CA75503, R01CA86072 and P30CA56036 (RGP), a grant from the Breast Cancer Research Foundation (RGP), a grant for Dr. Ralph and Marian C. Falk Medical Research Trust (RGP), Margaret Q. Landenberger Research Foundation, the Department of Defense Concept Award W81XWH-11-1-0303.

Study co-authors are, from Kimmel Cancer Center: first author Kongming Wu, Zhaoming Li, Shaoxin Cai, Lifeng Tian, Ke Chen, Jing Wang and Adam Ertel; Junbo Hu, from Huazhong University of Science and Technology, China; and Ye Sun, and Xue Li from Boston Children's Hospital.

Thomas Jefferson University (TJU), the largest freestanding academic medical center in Philadelphia, is nationally renowned for medical and health sciences education and innovative research. Founded in 1824, TJU includes Jefferson Medical College (JMC), one of the largest private medical schools in the country and ranked among the nation’s best medical schools by U.S. News & World Report, and the Jefferson Schools of Nursing, Pharmacy, Health Professions, Population Health and the Graduate School of Biomedical Sciences. Jefferson University Physicians is TJU’s multi-specialty physician practice consisting of the full-time faculty of JMC. Thomas Jefferson University partners with its clinical affiliate, Thomas Jefferson University Hospitals.

Jackie Kozloski | Newswise
Further information:
http://www.jefferson.edu

More articles from Health and Medicine:

nachricht World first: Massive thrombosis removed during early pregnancy
20.07.2017 | Universitätsspital Bern

nachricht Therapy of preterm birth in sight?
19.07.2017 | Universitätsspital Bern

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>