Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Discover a New Pathway in Blood Vessel Inflammation and Disease

05.09.2013
Case Western Reserve University Studies Establish Kruppel-like Factors as Master Regulators of Vascular Health

Case Western Reserve researchers have identified a genetic factor that blocks the blood vessel inflammation that can lead to heart attacks, strokes and other potentially life-threatening events.

The breakthrough involving Kruppel-like factor (KLF) 15 is the latest in a string of discoveries from the laboratory of professor of medicine Mukesh K. Jain, MD, FAHA, that involves a remarkable genetic family. Kruppel-like factors appear to play prominent roles in everything from cardiac health and obesity to metabolism and childhood muscular dystrophy.

School of Medicine instructor Yuan Lu, MD, a member of Jain’s team, led the study involving KLF-15 and its role in inflammation, which appears online this week in the Journal of Clinical Investigation. Lu and colleagues observed that KLF-15 blocks the function of a molecule called NF-kB, a dominant factor responsible for triggering inflammation.

This finding reveals a new understanding of the origins of inflammation in vascular diseases, and may eventually lead to new, targeted treatment options.

“It had been suspected that smooth muscle cells were related to inflammation, but it hadn’t been pinpointed and specifically linked to disease,” said Jain, Ellery Sedgwick Jr. Chair and director, Case Cardiovascular Research Institute at Case Western Reserve School of Medicine. Jain also is chief research officer for the Harrington Heart & Vascular Institute at University Hospitals Case Medical Center.

“This work provides cogent evidence that smooth muscle cells can initiate inflammation and thereby promote the development of vascular disease.” Smooth muscle cells are only one of two major cell types within blood vessels walls. The other cell type, endothelium, has traditionally taken the blame for inflammation, but Jain’s study suggests that both cells are critically important in the development of vascular disease.

The researchers learned that expression of this factor appeared mainly in smooth muscle cells and that levels were markedly reduced in atherosclerotic human blood vessels. To establish causality, the team generated genetically-modified mice where they deleted KLF-15 gene in smooth muscle cells.

“We expected to see more proliferation of the smooth muscle cells as this is a common response of this cell type in disease,” Lu said, first author on the paper. “Instead, we were surprised to see rampant vascular inflammation and hyper activated NF-kB, the master regulator of inflammation.” The results offer hope for the development of specific anti-inflammatory therapies for vascular disease. Cholesterol-lowering drugs such as statins have some anti-inflammatory effects, but despite their widespread use, the burden of vascular disease remains high.

As statins’ primary role is to lower cholesterol levels, developing additional or more potent anti-inflammatory therapies are needed to compliment statins’ important function. Jain’s previous research of the KLF family of genetic factors revealed regulator functions in blood vessels. KLF4 was shown to potently inhibit inflammation in the endothelium, the other major cell type in vessels.

The current work is first to establish a role for these factors in smooth muscle inflammation. “Collectively, these studies establish KLFs as a central hub regulating vascular health,” Jain said. “Boosting levels of these factors may be a particularly effective way to reduce inflammation and the development or progression of vascular diseases such as atherosclerosis.” This research was funded by grants from the National Institutes of Health (R01HL112486-02) and American Heart Association (12SDG1205055).

About Case Western Reserve University School of Medicine

Founded in 1843, Case Western Reserve University School of Medicine is the largest medical research institution in Ohio and is among the nation's top medical schools for research funding from the National Institutes of Health. The School of Medicine is recognized throughout the international medical community for outstanding achievements in teaching. The School's innovative and pioneering Western Reserve2 curriculum interweaves four themes--research and scholarship, clinical mastery, leadership, and civic professionalism--to prepare students for the practice of evidence-based medicine in the rapidly changing health care environment of the 21st century. Eleven Nobel Laureates have been affiliated with the school. Annually, the School of Medicine trains more than 800 M.D. and M.D./Ph.D. students and ranks in the top 25 among U.S. research-oriented medical schools as designated by U.S. News & World Report's "Guide to Graduate Education." The School of Medicine's primary affiliate is University Hospitals Case Medical Center and is additionally affiliated with MetroHealth Medical Center, the Louis Stokes Cleveland Department of Veterans Affairs Medical Center, and the Cleveland Clinic, with which it established the Cleveland Clinic Lerner College of Medicine of Case Western Reserve University in 2002.

Jessica Studeny | EurekAlert!
Further information:
http://www.case.edu

More articles from Health and Medicine:

nachricht Oxygen can wake up dormant bacteria for antibiotic attacks
08.12.2016 | Penn State

nachricht NTU scientists build new ultrasound device using 3-D printing technology
07.12.2016 | Nanyang Technological University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

Decoding cement's shape promises greener concrete

08.12.2016 | Materials Sciences

Will Earth still exist 5 billion years from now?

08.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>