Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Developing New Tool to Detect Cancer

27.08.2008
Early cancer detection can significantly improve survival rates. Current diagnostic tests often fail to detect cancer in the earliest stages and at the same time expose a patient to the harmful effects of radiation.

Led by Dr. Patrick McCann, a small group of internationally known researchers at the University of Oklahoma with expertise in the development of mid-infrared lasers is working to create a sensor to detect biomarker gases exhaled in the breath of a person with cancer.

Proof-of-concept detection of a suspected lung cancer biomarker in exhaled breath has already been established as reported by the Oklahoma group in the July 2007 issue of Applied Optics. The research was inspired by studies showing that dogs can detect cancer by sniffing the exhaled breath of cancer patients.

For example, by smelling breath samples, dogs identified breast and lung cancer patients with accuracies of 88 and 97 percent, respectively, as reported in the March 2006 issue of Integrative Cancer Therapies. The evidence is clear—gas phase molecules are uniquely associated with cancer.

Intrigued by the concept of using breath analysis to detect cancer, McCann saw an opportunity to use mid-infrared laser technology to help elucidate the relationship between specific gas phase biomarker molecules and cancer. He believes it is possible to develop easy-to-use detection devices for cancer, particularly for hard-to-detect cancers like lung cancer. McCann says we need sensors that detect these gas phase cancer biomarkers. “A device that measures cancer specific gases in exhaled breath would change medical research, as we know it.”

McCann says the science and technology exist to support the development of a new tool to detect cancer, but the research will take from five to 10 years to get low-cost devices into the clinic. OU may have the strongest contingent of researchers dedicated to providing a solution to the problem using this approach. Even though studies confirm that dogs can detect cancer by smelling the gases, they can’t tell us what gases they smell. It’s up to the medical research community using the best measurement tools to figure that out.

According to McCann, “Improved methods to detect molecules have been demonstrated, and more people need to be using these methods to detect molecules given off from cancer. We have developed laser-based methods to detect molecules. Mid-infrared lasers can measure suspected cancer biomarkers—ethane, formaldehyde and acetaldehyde.” McCann will use nanotechnology to improve laser performance and shrink laser systems, which would allow battery-powered operation of a handheld sensor device.

“You often have to go outside your discipline to pioneer new areas of research and Oklahoma has an advantage with so many experts in other fields. But getting funding for interdisciplinary research is challenging. However, more capital and research infrastructure are needed for this device to become a reality. As we build upon our existing capabilities Oklahoma can become more widely known as a center of excellence in this important area.”

Even though McCann is not a cancer researcher, he wants his research on developing innovative laser technology to benefit the millions of people who would otherwise suffer from a late-stage cancer diagnosis. McCann knows it can be done. He says, “The science supports it, and the dogs tell us there is something there.”

For more information about Dr. Patrick McCann and his research, send an e-mail to pmccann@ou.edu

Jana Smith | EurekAlert!
Further information:
http://www.ou.edu

More articles from Health and Medicine:

nachricht How cancer metastasis happens: Researchers reveal a key mechanism
19.01.2018 | Weill Cornell Medicine

nachricht Researchers identify new way to unmask melanoma cells to the immune system
17.01.2018 | Duke University Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Multifunctional Platform for the Delivery of Gene Therapeutics

22.01.2018 | Life Sciences

The world's most powerful acoustic tractor beam could pave the way for levitating humans

22.01.2018 | Power and Electrical Engineering

Siberian scientists learned how to reduce harmful emissions from HPPs

22.01.2018 | Power and Electrical Engineering

VideoLinks Wissenschaft & Forschung
Overview of more VideoLinks >>>