Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers develop and test new molecule as a delivery vehicle to image and kill brain tumors

04.08.2011
A single compound with dual function – the ability to deliver a diagnostic and therapeutic agent – may one day be used to enhance the diagnosis, imaging and treatment of brain tumors, according to findings from Virginia Commonwealth University and Virginia Tech.

Glioblastomas are the most common and aggressive brain tumor in humans, with a high rate of relapse. These tumor cells often extend beyond the well-defined tumor margins making it extremely difficult for clinicians and radiologists to visualize with current imaging techniques. Researchers have been investigating enhanced methods of attacking these cells in order to possibly delay or prevent brain tumor relapse.

In a study published in the August issue of the journal Radiology, the research team led by Panos Fatouros, Ph.D., a former professor and chair of the Division of Radiation Physics and Biology in the VCU School of Medicine who retired in 2010, demonstrated that a nanoparticle containing an MRI diagnostic agent can effectively be imaged within the brain tumor and provide radiation therapy in an animal model.

The nanoparticle filled with gadolinium, a sensitive MRI contrast agent for imaging, and coupled with radioactive lutetium 177 to deliver brachytherapy, is known as a theranostic agent – a single compound capable of delivering simultaneously effective treatment and imaging. The lutetium 177 is attached to the outside of the carbon cage of the nanoparticle.

"We believe the clustering properties of this nanoplatform prolong its retention within the tumor, thereby allowing a higher radiation dose to be delivered locally," said Michael Shultz, Ph.D., a research fellow in Fatouros' lab in the Department of Radiology in the VCU School of Medicine.

"This theranostic agent could potentially provide critical data about tumor response to therapy by means of longitudinal imaging without further contrast administration," said Fatouros.

A nanoparticle called a functionalized metallofullerene (fMF), also known as a "buckyball," served as the basis of this work and was created by study collaborator, Harry Dorn, Ph.D., a chemistry professor at Virginia Tech, and his team. In 1999, Dorn and his colleagues were able to encapsulate rare earth metals in the hollow interior of these nanoparticles that can easily be recognized by MRI techniques.

"Although this is a limited animal study, it shows great promise and hopefully this metallofullerene platform will be extended to humans," said Dorn.

Fatouros, who is the corresponding author on the study, Shultz and Dorn collaborated with John D. Wilson, Ph.D., associate professor in the VCU Department of Radiology; Christine E. Fuller, M.D., professor and director of neuropathology and autopsy pathology at VCU; and Jianyuan "Jason" Zhang, a graduate student in chemistry at Virginia Tech from Beijing, China.

The study was funded by grants to Fatouros from the National Institutes of Health's National Cancer Institute, and to Dorn from the National Science Foundation.

EDITOR'S NOTE: A copy of the study is available for reporters by email request from lbrooks@rsna.org.

About VCU and the VCU Medical Center: Virginia Commonwealth University is a major, urban public research university with national and international rankings in sponsored research. Located on two downtown campuses in Richmond, VCU enrolls more than 32,000 students in 211 certificate and degree programs in the arts, sciences and humanities. Sixty-nine of the programs are unique in Virginia, many of them crossing the disciplines of VCU's 13 schools and one college. MCV Hospitals and the health sciences schools of Virginia Commonwealth University compose the VCU Medical Center, one of the nation's leading academic medical centers.

Sathya Abraham | EurekAlert!
Further information:
http://www.vcu.edu

More articles from Health and Medicine:

nachricht Correct connections are crucial
26.06.2017 | Charité - Universitätsmedizin Berlin

nachricht One gene closer to regenerative therapy for muscular disorders
01.06.2017 | Cincinnati Children's Hospital Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>