Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers develop new model for cystic fibrosis

26.09.2008
In a first, researchers at the University of Iowa and the University of Missouri (MU) have developed a pig model for cystic fibrosis (CF) that appears to closely mimic the disease in human infants. The striking similarities between disease manifestations in the CF piglets and human newborns with CF suggest that this new model will help improve understanding of the disease and may also speed discovery of new treatments. The study is published in the Sept. 26 issue of Science.

CF is a common hereditary disease that affects multiple organ systems, including the intestines, pancreas, and lung. Mice with CF-causing mutations have helped researchers learn more about this disease, however, differences in physiology and biology mean that mice with CF mutations do not develop many of the typical symptoms that affect humans with CF.

"Lack of a better model has hampered our ability to answer long-standing questions in CF," explained Christopher Rogers, Ph.D., a former postdoctoral fellow in internal medicine at the UI Roy J. and Lucille A. Carver College of Medicine, and one of the study's lead authors. "The CF pig provides a unique opportunity to study one of the most common genetic diseases, and we hope to translate this new knowledge into better therapies and preventions."

In addition to Rogers, co-lead authors of the study were David Stoltz, M.D., Ph.D., UI assistant professor of internal medicine, and David Meyerholz, D.V.M., Ph.D., UI assistant professor of pathology.

The senior study author was Michael Welsh, M.D., UI professor of internal medicine and molecular physiology and biophysics, who holds the Roy J. Carver Chair of Internal Medicine and Physiology and Biophysics. Welsh also is a Howard Hughes Medical Institute investigator.

CF occurs when a person inherits two mutated copies of the CFTR gene leading to loss of ion channel function that adversely affects many organs. To create the CF pigs, the researchers used gene targeting to disrupt one copy of the normal gene in pig cells. They then cloned these altered cells to produce pigs with only one good copy of the gene. Like human CF-carriers, these animals did not show disease symptoms. The pigs were then bred naturally, and about one in four of the piglets were born with two disrupted copies of the gene.

The researchers established that piglets lacking CFTR have the abnormal ion channel activity that is a hallmark of CF disease. They also showed that the CF piglets develop the same disease characteristics that are commonly seen in newborn humans with CF, including a bowel obstruction known as meconium ileus, which often is the first sign of CF in humans. The pigs also have an abnormal pancreas, liver, and gall bladder, similar to CF patients.

"Thus far, the clinical, physiological and age-related appearance of disease in the pigs, as well as the organs involved, mimic CF seen in people," Stoltz said.

A primary cause of death and disability in patients with CF is lung disease. However, many questions remain about how infection and inflammation leads to lung damage. In the study, the lungs of the newborn CF pigs appeared similar to the lungs of their normal littermates and had no sign of infection or inflammation, possibly shedding some initial insight on the process. As the CF pigs mature and are exposed to airborne bacteria and viruses, the researchers hope to learn more about how and why lung disease develops in patients with CF.

"Researchers can now begin to study the disease progression as it is happening, something not possible in humans," Meyerholz said.

Jennifer Brown | EurekAlert!
Further information:
http://www.uiowa.edu

Further reports about: cystic fibrosis intestines multiple organ systems pancreas

More articles from Health and Medicine:

nachricht 'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers
16.02.2018 | National University of Science and Technology MISIS

nachricht New process allows tailor-made malaria research
16.02.2018 | Eberhard Karls Universität Tübingen

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Japanese researchers develop ultrathin, highly elastic skin display

19.02.2018 | Information Technology

Dispersal of Fish Eggs by Water Birds – Just a Myth?

19.02.2018 | Ecology, The Environment and Conservation

Studying mitosis' structure to understand the inside of cancer cells

19.02.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>