Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers develop new model for cystic fibrosis

26.09.2008
In a first, researchers at the University of Iowa and the University of Missouri (MU) have developed a pig model for cystic fibrosis (CF) that appears to closely mimic the disease in human infants. The striking similarities between disease manifestations in the CF piglets and human newborns with CF suggest that this new model will help improve understanding of the disease and may also speed discovery of new treatments. The study is published in the Sept. 26 issue of Science.

CF is a common hereditary disease that affects multiple organ systems, including the intestines, pancreas, and lung. Mice with CF-causing mutations have helped researchers learn more about this disease, however, differences in physiology and biology mean that mice with CF mutations do not develop many of the typical symptoms that affect humans with CF.

"Lack of a better model has hampered our ability to answer long-standing questions in CF," explained Christopher Rogers, Ph.D., a former postdoctoral fellow in internal medicine at the UI Roy J. and Lucille A. Carver College of Medicine, and one of the study's lead authors. "The CF pig provides a unique opportunity to study one of the most common genetic diseases, and we hope to translate this new knowledge into better therapies and preventions."

In addition to Rogers, co-lead authors of the study were David Stoltz, M.D., Ph.D., UI assistant professor of internal medicine, and David Meyerholz, D.V.M., Ph.D., UI assistant professor of pathology.

The senior study author was Michael Welsh, M.D., UI professor of internal medicine and molecular physiology and biophysics, who holds the Roy J. Carver Chair of Internal Medicine and Physiology and Biophysics. Welsh also is a Howard Hughes Medical Institute investigator.

CF occurs when a person inherits two mutated copies of the CFTR gene leading to loss of ion channel function that adversely affects many organs. To create the CF pigs, the researchers used gene targeting to disrupt one copy of the normal gene in pig cells. They then cloned these altered cells to produce pigs with only one good copy of the gene. Like human CF-carriers, these animals did not show disease symptoms. The pigs were then bred naturally, and about one in four of the piglets were born with two disrupted copies of the gene.

The researchers established that piglets lacking CFTR have the abnormal ion channel activity that is a hallmark of CF disease. They also showed that the CF piglets develop the same disease characteristics that are commonly seen in newborn humans with CF, including a bowel obstruction known as meconium ileus, which often is the first sign of CF in humans. The pigs also have an abnormal pancreas, liver, and gall bladder, similar to CF patients.

"Thus far, the clinical, physiological and age-related appearance of disease in the pigs, as well as the organs involved, mimic CF seen in people," Stoltz said.

A primary cause of death and disability in patients with CF is lung disease. However, many questions remain about how infection and inflammation leads to lung damage. In the study, the lungs of the newborn CF pigs appeared similar to the lungs of their normal littermates and had no sign of infection or inflammation, possibly shedding some initial insight on the process. As the CF pigs mature and are exposed to airborne bacteria and viruses, the researchers hope to learn more about how and why lung disease develops in patients with CF.

"Researchers can now begin to study the disease progression as it is happening, something not possible in humans," Meyerholz said.

Jennifer Brown | EurekAlert!
Further information:
http://www.uiowa.edu

Further reports about: cystic fibrosis intestines multiple organ systems pancreas

More articles from Health and Medicine:

nachricht Biofilm discovery suggests new way to prevent dangerous infections
23.05.2017 | University of Texas at Austin

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>