Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers develop first implanted device to treat balance disorder

21.10.2010
Success could spur new treatment approach for millions of people who suffer vestibular problems

A University of Washington Medical Center patient on Thursday, Oct. 21, will be the world's first recipient of a device that aims to quell the disabling vertigo associated with Meniere's disease.

The UW Medicine clinicians who developed the implantable device hope that success in a 10-person surgical trial of Meniere's patients will lead to exploration of its usefulness against other common balance disorders that torment millions of people worldwide.

The device being tested – a cochlear implant and processor with re-engineered software and electrode arrays – represents four-plus years of work by Drs. Jay Rubinstein and James Phillips of UW's Department of Otolaryngology-Head and Neck Surgery. They worked with Drs. Steven Bierer, Albert Fuchs, Chris Kaneko, Leo Ling and Kaibao Nie, UW specialists in signal processing, brainstem physiology and vestibular neural coding.

"What we're proposing here is a potentially safer and more effective therapy than exists now," said Rubinstein, an ear surgeon and auditory scientist who has earned a doctoral degree in bioengineering and who holds multiple U.S. patents.

In the United States, Meniere's affects less than one percent of the population. The disease occurs mostly in people between ages 30 and 50, but can strike anyone. Patients more often experience the condition in one ear; about 30 percent of cases are bilateral.

The disease affects hearing and balance with varying intensity and frequency but can be extremely debilitating. Its episodic attacks are thought to stem from the rupture of an inner-ear membrane. Endolymphatic fluid leaks out of the vestibular system, causing havoc to the brain's perception of balance.

To stave off nausea, afflicted people must lie still, typically for several hours and sometimes up to half a day while the membrane self-repairs and equilibrium is restored, said Phillips, a UW research associate professor and director of the UW Dizziness and Balance Center. Because the attacks come with scant warning, a Meniere's diagnosis can cause people to change careers and curb their lifestyles.

Many patients respond to first-line treatments of medication and changes to diet and activity. When those therapies fail to reduce the rate of attacks, surgery is often an effective option but it typically is ablative (destructive) in nature. In essence, the patient sacrifices function in the affected ear to halt the vertigo – akin to a pilot who shuts down an erratic engine during flight. Forever after, the person's balance and, often, hearing are based on one ear's function.

With their device, Phillips and Rubinstein aim to restore the patient's balance during attacks while leaving natural hearing and residual balance function intact.

A patient wears a processor behind the affected ear and activates it as an attack starts. The processor wirelessly signals the device, which is implanted almost directly underneath in a small well created in the temporal bone. The device in turn transmits electrical impulses through three electrodes inserted into the canals of the inner ear's bony labyrinth.

"It's an override," Phillips said. "It doesn't change what's happening in the ear, but it eliminates the symptoms while replacing the function of that ear until it recovers."

The specific placement of the electrodes in the bony labyrinth is determined by neuronal signal testing at the time of implant. The superior semicircular canal, lateral semicircular canal and posterior semicircular canal each receive one electrode array.

A National Institutes of Health grant funded the development of the device and its initial testing at the Washington National Primate Research Center. The promising results from those tests led the U.S. Food and Drug Administration, in June, to approve the device and the proposed surgical implantation procedure. Shortly thereafter, the limited surgical trial in humans won approval from the Western Institutional Review Board, an independent body charged with protecting the safety of research subjects.

By basing their invention on cochlear implants whose design and surgical implantation were already FDA-approved, Phillips and Rubinstein leapfrogged scientists at other institutions who had begun years earlier but chosen to develop novel prototypes.

"If you started from scratch, in a circumstance like this where no one has ever treated a vestibular disorder with a device, it probably would take 10 years to develop such a device," Rubinstein said.

The device epitomizes the translational advancements pursued at UW's academic medical centers, he said. He credited the team's skills and its access to the primate center, whose labs facilitated the quick turnaround of results that helped win the FDA's support.

A successful human trial could lead the implant to become the first-choice surgical intervention for Meniere's patients, Phillips said, and spark collaboration with other researchers who are studying more widespread balance disorders.

The first patient will be a 56-year-old man from Yakima, Wash. He has unilateral Meniere's disease and has been a patient of Rubinstein's for about two years.

See a related video at UW Medicine's YouTube site. Drs. Rubinstein and Phillips discuss the device: http://www.youtube.com/watch?v=iu047vTckvA

Cochlear Ltd. of Lane Cove, Australia, will manufacture the device. Cochlear is a medical equipment company and longtime maker of devices for hearing-impaired people.

Mary Guiden | EurekAlert!
Further information:
http://www.uw.edu

More articles from Health and Medicine:

nachricht Penn study identifies new malaria parasites in wild bonobos
21.11.2017 | University of Pennsylvania School of Medicine

nachricht NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures
17.11.2017 | National Institute of Standards and Technology (NIST)

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Previous evidence of water on mars now identified as grainflows

21.11.2017 | Physics and Astronomy

NASA's James Webb Space Telescope completes final cryogenic testing

21.11.2017 | Physics and Astronomy

New catalyst controls activation of a carbon-hydrogen bond

21.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>